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Abstract

This package allows practitioners to estimate cross-sectional spatial

models in gretl. The package, presented in Casoli et al. (2019) can han-

dle three types of models: Spatial Autoregressive Models (SAR), Spatial

Durbin Models (SDM) and Spatial Error Models (SEM). Computation

of the Hessian matrix is performed in both analytical and mixed ways.

Some speed-up procedures for the computation of the log-determinant

term are available.
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1 The Spatial Models

SPM package allows estimation of three types of spatial models: the SAR, the
SDM and the SEM. For further details see LeSage and Pace (2009).

1.1 The Spatial Autoregressive model and the Spatial

Durbin Model

The SAR model includes spatial lags of the dependent variable only, whereas
the SDM adds also spatial lags of the covariates. Generalising, and de�ning
Z = [ιnX W X] and δ = [α β θ]′, it is possible to write:

y = ρWy + Zδ + ε (1)

y = (In − ρW )−1Zδ + (In − ρW )−1ε (2)

ε ∼ N(0, σ2In),

where equation (1) denotes the SAR if Z = [ιnX] or the SDM if Z = [ιnXWX],
and equation (2) the related DGP.

We denote y as an n× 1 vector of the dependent variable, W as the n× n
spatial weight matrix, ιn as the constant term, X as the n × k matrix of
explanatory variables, and ε as the error component. Spatial dependence is
captured by the parameter ρ.

Estimation of parameters ρ, δ and σ2 is implemented via Maximum Like-
lihood. In particular, assuming ρ as known, de�ned as ρ∗, the model becomes
y − ρ∗Wy = Zδ + ε, suggesting that parameters δ and σ2 can be easily es-
timated as follows: δ̂ = (Z ′Z)−1Z ′(In − ρ∗W )y and σ2 = n−1(y − ρ∗Wy −
Zδ)′(y − ρ∗Wy − Zδ). The log-likelihood function is given by:

lnL = −(n/2)ln(πσ2) + ln|In − ρW | −
e′e

2σ2
(3)

e = y − ρWy −Xβ
ρ ∈ (min(ω)−1,max(ω)−1), (4)

in which ω contains the eigenvalues of the spatial weights matrix. If W has
been scaled such to have the maximum eigenvalue equal to 1, it is possible to
restrict the interval such that ρ ∈ (min(ω)−1, 1). The choice of matrix W is
up to users; the SPM automatically provides a row-standardisation.

The optimisation problem can be easily handled using the concentrated
log-likelihood (equation (5)) as a function of the only parameter ρ. δ and σ2

can be consequently derived as a function of the estimated ρ. This can be
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summarised in:

lnL(ρ) = c+ ln|In − ρW | − (n/2)ln[(e0 − ρed)′(e0 − ρed)] (5)

e0 = y − Zδ0 (6)

ed = Wy − Zδd (7)

δ0 = (Z ′Z)−1Z ′y (8)

δd = (Z ′Z)−1Z ′Wy, (9)

in which c is a constant term, δ0, e0, δd and ed are computed ex ante from two
auxiliary regressions of y and Wy on Z respectively. The Maximum Likeli-
hood estimates of parameters δ̂, σ̂2 and the associated disturbances variance-
covariance matrix Ω̂ are given by: δ̂ = δ0−ρ̂δd, σ̂2 = n−1(e0−ρ̂ed)′(e0−ρ̂ed) and
Ω̂ = σ̂2[(In − ρ̂W )′(In − ρ̂W )]−1. Finally, to calculate standard errors and the
related t statistics, the variance-covariance matrix of the parameters is com-
puted in two di�erent ways: pure analytical and mixed (analytical/numerical),
suggested in LeSage and Pace (2009). The choice of the technique is left to
the users.

1.2 The Spatial Error Model

The SEM contains spatial dependences in the disturbances, as shown in equa-
tion (10), with (11) being the DGP.

y = Xβ + u (10)

u = λWu+ ε

y = Xβ + (In − λW )−1ε (11)

ε ∼ N(0, σ2In).

Here the spatial dependence is expressed by the parameter λ; the other vari-
ables follow the notation described above.

The full log-likelihood is given by:

lnL = −(n/2)ln(πσ2) + ln|In − λW | −
e′e

2σ2
(12)

e = (In − λW )(y −Xβ).

Again, it is possible to concentrate the log-likelihood, as a function of the only
parameter λ, and then recovering β and σ2; unlike the previous case, however,
e(λ)′e(λ) is not a simple quadratic form of the parameters, but is derived from
moment matrices as in (14)

lnL(λ) = c+ ln|In − λW | − (n/2)ln(e(λ)′e(λ)) (13)
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AXX(λ) = X ′X − λX ′WX − λX ′W ′X + λ2X ′W ′WX (14)

AXy(λ) = X ′y − λX ′Wy − λX ′W ′y + λ2X ′W ′Wy

Ayy(λ) = y′y − λy′Wy − λy′W ′y + λ2y′W ′Wy

β(λ) = AXX(λ)−1AXy(λ)

e(λ)′e(λ) = Ayy(λ)− β(λ)′AXX(λ)β(λ)

The values for β̂ and σ̂2 can be recovered, again, straightforwardly (LeSage
and Pace, 2009). The variance-covariance matrix is computed in analytical
way.

2 The functions

The package provides 4 public functions. Via scripting, the functions are the
following:

• sr(): this function provides estimation of a SAR model or a SDM.

• sem(): allows estimation of a SEM

• printres(): prints the results of sr() and sem()

• spatial_GUI(): boh.

2.1 The function sr()

This function requires the following inputs:

• y: the dependent variable series

• X: the list of regressors (without constant)

• W: the weight matrix

• sdm: a boolean (0 for the SAR, 1 for the SDM)

• hess_form: a boolean (0 for analytical Hessian, 1 for mixed)

• lik_type: an integer determining the log-determinant computation method.
See below

• moments: see below

• n_rep: see below

• poly_ord: see below
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The integer lik_type assumes value 0 for analytical computation, 1 for the
Ord decomposition of the log-determinant, 2 for Monte Carlo numerical ap-
proximation and 3 for approximation with Chebychev polynomials (LeSage
and Pace, 2009). The default is 0. If lik_type = 2, the moments and n_rep

scalars de�ne the number of moments and the number of replications, respec-
tively, necessary for the Monte Carlo approximation. If omitted, the defaults
are 50 moments and 100 replications. Instead, if lik_type = 3, the scalar
poly_ord speci�es the Chebychev polynomial order. The default is 10.

The output of the function is a bundle containing:

• model: the estimated model

• variables: list of regressors

• beta: estimated coe�cients

• betastderr: standard errors of estimated coe�cients

• beta_t: the t-statistic for β̂

• rho: estimated ρ

• rhostderr: standard errors of estimated ρ

• rho_t: the t-statistic for ρ̂

• s2: estimated variance of the error

• s2stderr: standard errors of σ̂2

• s2_t: the t-statistic for σ̂2

• hess: Hessian computation type

• lkt: log-determinant computation type

• lk: log-likelihood

• Sigma: covariance matrix of errors

• CPUtime: elapsed time in seconds

2.2 The function sem()

This function requires the following inputs:

• y: the dependent variable series

• X: the list of regressors (without constant)
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• W: the weight matrix

• lik_type: an integer determining the log-determinant computation method.
See below

• moments: see below

• n_rep: see below

• poly_ord: see below

The integer lik_type assumes value 0 for analytical computation, 1 for the
Ord decomposition of the log-determinant, 2 for Monte Carlo numerical ap-
proximation and 3 for approximation with Chebychev polynomials (LeSage
and Pace, 2009). The default is 0. If lik_type = 2, the moments and n_rep

scalars de�ne the number of moments and the number of replications, respec-
tively, necessary for the Monte Carlo approximation. If omitted, the defaults
are 50 moments and 100 replications. Instead, if lik_type = 3, the scalar
poly_ord speci�es the Chebychev polynomial order. The default is 10.

The output of the function is a bundle containing:

• model: the estimated model

• variables: list of regressors

• beta: estimated coe�cients

• betastderr: standard errors of estimated coe�cients

• beta_t: the t-statistic for β̂

• lambda: estimated λ

• lambdastderr: standard errors of estimated λ

• lambda_t: the t-statistic for λ̂

• s2: estimated variance of the error

• s2stderr: standard errors of σ̂2

• s2_t: the t-statistic for σ̂2

• lkt: log-determinant computation type

• lk: log-likelihood

• Sigma: covariance matrix of errors

• CPUtime: elapsed time in seconds
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3 Example
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