Identification of covariance structures

Jack Lucchetti
Facoltà di Economia "Giorgio Fuà" - Ancona

Covariance structures

Definition of a covariance structure: parametric model featuring A and B such that

$$
A(\theta) \Sigma A(\theta)^{\prime}=B(\theta) B(\theta)^{\prime}
$$

$\Sigma=V\left(y_{t} \mid \mathscr{F}_{t}\right)$
y_{t} : observable variables
θ : parameters

Examples:

Structural VARs
Factor Multivariate GARCH/SV models
Multivariate statistics (factor analysis, principal components, ...)

LISREL models

The identification problem

If the equation

$$
A_{0} \Sigma A_{0}^{\prime}=B_{0} B_{0}^{\prime}
$$

is satisfied, then

$$
A_{1} \Sigma A_{1}^{\prime}=B_{1} B_{1}^{\prime}
$$

is satisfied too, with

$$
\begin{aligned}
& A_{1}=Q A_{0} \\
& B_{1}=Q B_{0} H
\end{aligned}
$$

where Q is invertible and H is orthogonal.

What constraints are needed on A and B to ensure that

$$
\Sigma=A^{-1} B B^{\prime}\left(A^{\prime}\right)^{-1} .
$$

is unique?
In general, it never is : -) .
In an ϵ-neighbourhood, impose linear constraints:

$$
\begin{aligned}
R_{a} \operatorname{vec} A=R_{a} a & =d_{a} \\
R_{b} \operatorname{vec} B=R_{b} b & =d_{b} ;
\end{aligned}
$$

or, in explicit form,

$$
\begin{aligned}
a & =S_{a} \theta+d_{a} \\
b & =S_{b} \theta+d_{b} ;
\end{aligned}
$$

In vectorised form: if

$$
\begin{aligned}
& A+\mathrm{d} A=(I+Q) A \\
& B+\mathrm{d} B=(I+Q) B(I+H)
\end{aligned}
$$

where $(I+Q)$ is nonsingular and $(I+H)$ is orthogonal, then

$$
\begin{aligned}
\mathrm{d} a & =(I \otimes Q)\left(S_{a} \theta+s_{a}\right) \\
\mathrm{d} b & =\left[(I \otimes Q)+\left(H^{\prime} \otimes I\right)\right]\left(S_{b} \theta+s_{b}\right)
\end{aligned}
$$

Identification fails if H and/or Q exist such that

$$
\begin{aligned}
R_{a}^{\prime} \mathrm{d} a=R_{a}^{\prime}(I \otimes Q)\left(S_{a} \theta+s_{a}\right) & =0 \\
R_{b}^{\prime} \mathrm{d} b=R_{b}^{\prime}\left[(I \otimes Q)+\left(H^{\prime} \otimes I\right)\right]\left(S_{b} \theta+s_{b}\right) & =0
\end{aligned}
$$

What can we say on H and Q ?
Let's start from a narrower case.

The C-model

$$
\hat{\Sigma}=B_{0} B_{0}^{\prime} .
$$

The model is under-identified if an admissible B_{1} exists in a neighbourhood of B_{0} which can be written as

$$
B_{1}=B_{0}+\mathrm{d} B_{0}=B_{0}(I+H),
$$

where $(I+H)$ is orthogonal. Then $(I+H)$ must be an infinitesimal rotation.

Infinitesimal rotations

A matrix $I+H$ is an infinitesimal rotation if

- H is infinitesimal

6 $(I+H)$ is orthogonal.
This implies that H is hemisymmetric ($H=-H^{\prime}$) and

$$
\underset{n^{2} \times 1}{h}=\operatorname{vec} H=\underset{n^{2} \times \frac{n(n-1)}{2}}{\widetilde{D}_{n}} \cdot{ }_{\frac{n(n-1)}{2} \times 1}^{\varphi}
$$

Infinitesimal rotations - example

For example, a (2×2) infinitesimal rotation can be written as

$$
I+H=\left[\begin{array}{rr}
1 & -\varphi \\
\varphi & 1
\end{array}\right]
$$

So that

$$
h=\left[\begin{array}{r}
0 \\
\varphi \\
-\varphi \\
0
\end{array}\right]=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right] \varphi
$$

The C-model - continued

If

$$
R_{b}^{\prime} \mathrm{d} b=R_{b}^{\prime}\left(H^{\prime} \otimes I\right)\left(S_{b} \theta+s_{b}\right)=0
$$

where H is hemisymmetric \Longrightarrow no identification at θ. It can be shown that if the model is identified at θ, the equations

$$
\begin{equation*}
\varphi^{\prime} \widetilde{D}_{n}^{\prime}\left(I \otimes R_{i}^{\prime}\right)[S \theta+s]=\varphi^{\prime} T_{i} \theta+\varphi^{\prime} t_{i}=0 \tag{1}
\end{equation*}
$$

have no solutions except $\varphi=0$ for $i=1, \ldots, p$.

The C-model - continued

Various cases:

6 If the order condition fails, there is a $\varphi \neq 0$ that satisfies (1) for any θ.

6 The order condition is met, but a $\varphi \neq 0$ can be found that satisfies (1) for any θ. This case is called structural under-identification.

The structure condition can be checked via the rank of
$\mathcal{M}=\sum_{i=1}^{n^{2}-p}\left[\widetilde{D}_{n}^{\prime}\left(I \otimes S_{i}^{\prime}\right) R R^{\prime}\left(I \otimes S_{i}\right) \widetilde{D}_{n}\right]+\widetilde{D}_{n}^{\prime}\left(I \otimes \bar{S}^{\prime}\right) R R^{\prime}(I \otimes \bar{S}) \widetilde{D}_{n}$

The C-model - continued

Main results

Both the order and structure conditions are necessary. Neither is sufficient. However,
© If both the order and structure conditions are met, then identification occurs almost everywhere in Θ.

6 Both conditions can be checked numerically.

The C-model - example

The classic Cholesky decomposition:

$$
B=\left[\begin{array}{cc}
\theta_{1} & 0 \\
\theta_{2} & \theta_{3}
\end{array}\right]
$$

6 Order condition: OK

$$
\mathcal{M}=\widetilde{D}_{n}^{\prime}\left[\sum_{i=1}^{3}\left(I \otimes S_{i}\right) R^{\prime} R\left(I \otimes S_{i}^{\prime}\right)\right] \widetilde{D}_{n}=1
$$

therefore the structure condition is OK too.

The C-model - example

Analytically:
Consider postmultiplying B by an arbitrary infinitesimal rotation:

$$
\left[\begin{array}{cc}
\theta_{1} & 0 \\
\theta_{2} & \theta_{3}
\end{array}\right]\left[\begin{array}{cc}
1 & -\varphi \\
\varphi & 1
\end{array}\right]=\left[\begin{array}{cc}
\theta_{1} & -\theta_{1} \varphi \\
\theta_{2}+\theta_{3} \varphi & \theta_{3}-\theta_{2} \varphi
\end{array}\right]
$$

The result is not admissible (ie lower triangular) if and only if $\theta_{1} \varphi=0$. If $\varphi \neq 0$, then θ_{1} must be 0 .

The C-model - example

In terms of the previous results: equation (1) is

$$
\varphi^{\prime} \widetilde{D}_{n}^{\prime}\left(I \otimes R_{i}^{\prime}\right)(S \theta+s)=\varphi\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]=\varphi \cdot \theta_{1}=0 .
$$

If $\varphi \neq 0$, then the only solution is $\theta_{1}=0$.
The only region in Θ where the model is under-identified is the plane $\theta_{1}=0$, which has zero Lebesgue measure in \mathbb{R}^{3}. As a consequence, the model is identified almost everywhere.

The $A B$-model

In the general case, we have

$$
\begin{aligned}
& A+\mathrm{d} A=(I+Q) A \\
& B+\mathrm{d} B=(I+Q) B(I+H) .
\end{aligned}
$$

Under-identification implies non-zero solutions to

$$
\begin{aligned}
R_{a}^{\prime} \mathrm{d} a=R_{a}^{\prime}(I \otimes Q)\left(S_{a} \theta+s_{a}\right) & =0 \\
R_{b}^{\prime} \mathrm{d} b=R_{b}^{\prime}\left[(I \otimes Q)+\left(H^{\prime} \otimes I\right)\right]\left(S_{b} \theta+s_{b}\right) & =0 ;
\end{aligned}
$$

The $A B$-model - continued

H must be hemisymmetric (like before). Q is unrestricted because $(I+Q)$ is nonsingular for any infinitesimal Q. Again, identification implies no trivial solutions to

$$
\begin{aligned}
q^{\prime} U_{i}^{a} \theta+q^{\prime} u_{i}^{a} & =0 & \text { for } i=1 \ldots p_{a} \\
q^{\prime} U_{j}^{b} \theta+\varphi^{\prime} T_{j}^{b} \theta+q^{\prime} u_{j}^{b}+\varphi^{\prime} t_{j}^{b} & =0 & \text { for } j=1 \ldots p_{b}
\end{aligned}
$$

Again, the matrices U_{i}^{a}, U_{i}^{b} and T_{i}^{b} depend only on the constraints structure.

The $A B$-model - structure condition

The $A B$-model is structurally identified if a certain matrix \mathcal{M} (that does not fit in a slide) is invertible.
\mathcal{M} is a function of the R 's and S 's alone.
\Downarrow
The structure condition can, again, be checked numerically.

Open questions

- Relationship between the set of non-identified points and the set of singular matrices (both have 0 measure)?
- Can this be generalised to nonlinear constraints?
- How about inequality constraints?

