tricola:	la:				email:				
	ELEM	ENTI D	I ECONO	OMETR	IA -	18/01/201	9 - Time: 2 h 30'		
or in your	npossibl answer	e to classif	y the way t the space p	hey are s	tated	(Not necessa	e), unambiguously fal rily). Write the moti y" answer with no me	$\hat{\text{vations}}$	
(a)	The ma	$atrix \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is sing	gular.					
	True	O		False	0		Not necessarily	0	
(b)	If an es	stimator h	as a limit i	n probab False	oility, i	t is consiste	nt. Not necessarily	0	
(c)	The su	pport for	the χ_2^2 dist	ribution False	is the	whole real l	ine. Not necessarily	0	
(d)		add explai	natory vari	ables to a	an OL	S regression	, the sum of squared	residu	
	True	0		False	0		Not necessarily	O	
(0)	The nu	ll hypothe	osis for the	Chow to	at ja h	omoskedasti	aity		
(6)	True			False		Omoskedasu	Not necessarily	\bigcirc	

2. Given the dynamic model

$$y_t = 0.8y_{t-4} + 1.5x_t + 0.2x_{t-1} - 0.7x_{t-4} + \varepsilon_t$$

(a) Compute the dynamic multipliers (simple and cumulated) up to order 4:

k	δ_k	c_k
0		
1		
2		
3		
4		

where
$$\delta_k = \frac{\partial y_t}{\partial x_{t-k}}$$
 and $c_k = \sum_{i=0}^k \delta_i$.

(b) Calculate
$$c = \lim_{k \to \infty} c_k$$

$$c = \underline{\hspace{1cm}}$$

3. Card (1995)¹ used wage and education data for a sample of men in 1976 to estimate the return to education. We use the same dataset, and here is a brief description of the variables:

Variable name	Description		
lwage	$\log(\text{wage})$		
exper	work experience		
exper2	work experience, squared		
black	dummy, 1 if black		
south	dummy, 1 if in south, 1976		
smsa	dummy, 1 if in metropolitan area, 1976		
educ	years of schooling, 1976		
nearc4	dummy, 1 if lived near college, 1966		
motheduc	mother's schooling		
fatheduc	father's schooling		

Consider tables 1 and 2, and answer the following questions:

.)	According to the OLS estimate, is the effect of education on wage significant?							

¹Card, D. (1995), "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," in *Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp*, ed. L. N. Christophides, E. K. Grant, and R. Swidinsky, 201–222. Toronto: University of Toronto Press.

(b)	According to the OLS estimate, what is the effect of experience on wages?								
(c)	Is the IV model over-identified?								
	$\mathbf{YES} \bigcirc \qquad \mathbf{NO} \ \bigcirc$								
(d)	According to the IV estimate, is the effect of education on wage significant?								
(e)	According to the IV estimate, can you see evidence of racial discrimination?								
(f)	What is your economic interpretation of the results for the Hausman test in Table 2?								

Table 1: OLS model for lwage

OLS, using observations 1–2220 Dependent variable: lwage

	Coeffici	ent	Std.	Error	t-ratio	p-value
const	4.66724	1	0.078	35337	59.43	0.0000
exper	0.08865	591	0.007	91891	11.20	0.0000
exper2	-0.00240)584	0.000	397591	-6.051	0.0000
black	-0.17214	4 5	0.023	3737	-7.365	0.0000
south	-0.11392	28	0.017	6191	-6.466	0.0000
smsa	0.16335	53	0.018	34394	8.859	0.0000
educ	0.07607	787	0.004	07375	18.68	0.0000
Mean depend	dent var	6.2854	23	S.D. dep	endent va	r 0.439693
Sum squared	l resid	315.63	327	S.E. of re	egression	0.377659
R^2		0.2642	259	Adjusted	$1 R^2$	0.262264
F(6, 2213)		132.47	' 50	P-value(F)	1.5e-143

Table 2: IV model for lwage

TSLS, using observations 1–2220 Dependent variable: lwage Instrumented: educ

Instruments: const exper exper2 black south smsa nearc4 motheduc fatheduc

	Coefficie	ent Sto	d. Error	$t ext{-ratio}$	p-value
const	4.26151	0.21	6814	19.66	0.0000
exper	0.09895	10 0.00	948206	10.44	0.0000
exper2	-0.00244	901 0.00	0401274	-6.103	0.0000
black	-0.15044	9 0.02	59116	-5.806	0.0000
south	-0.10723	6 0.01	.80663	-5.936	0.0000
smsa	0.15084	6 0.01	95977	7.697	0.0000
educ	0.10008	8 0.01	26301	7.924	0.0000
Mean depen	dent var	6.285423	S.D. de	ependent va	r 0.439693
Sum squared	d resid	320.5867	S.E. of	regression	0.380612
R^2		0.259351	Adjust	$ed R^2$	0.257343
F(6, 2213)		83.66444	P-value	e(F)	1.21e-94

Hausman test: $\chi^2(1)=4.12446$ (p-value = 0.0422675) Sargan over-identification test: $\chi^2(2)=2.05774$ (p-value = 0.357411) Weak instrument test: First-stage F(3,2211)=87.0773