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Disclaimer: this is just a set of lecture notes that follow more or less what we
did in class. For the real thing, you may want to have a look at Efron and Hastie
(2016) or Hastie et al. (2015).

1 Prediction and the bias-variance tradeoff

In most of statistical inference, the chief quality of a statistic, such as an estim-
ator, is that its distribution should be centred around the target quantity. This
is why we value properties such as unbiasedness and consistency. Sometimes,
however, we may want to adopt a differenty take. This typically happens in pre-
diction problems, when we may want to trade bias in exchange for smaller vari-
ance. For example: consider a situation where you have two predictors, y and 7,
for the same unobservable quantity, whose real value is 2. Figure 1 shows their
densities. The first one, j, is unbiased, but has a large variance; the other one, ,
is biased but less dispersed. Which one would you pick?

Figure 1: Two predictors

In most cases, you'd want to use j, for the very simple reason that your pre-
diction errors will be biased (not 0 on average), but the probability of making
big mistakes (say, predicting y to be outside the [0,4] range) is much smaller
than the one you'd get by using j.



Let’s formalise this: suppose you have a predictor y of a quantity y, with
E[] = m. Of course it would be nice if m = y, but its variance must also be
considered. What we really care about is how large the prediction error is going
to be. We measure this via the expected value of the squared prediction error,
also known as MSE (Mean Square Error):

MSE El(y-»?] =
E[l(y-m) - (F-m)?] =E[y-m]* +V[§] =

Bias® + Variance

which is the sum of the square of the bias and the variance.! In many cases in
practice, one uses its square root, the “Root Mean Square Error”:

RMSE =\/E[(y-)?],

but the principle remains the same.

When prediction is about something that can be represented via a DGP, one
would think that the best predictor would be a function of the most efficient
among all consistent estimators. In fact, it needn’t be so: in some cases, we may
accept some bias in return for a smaller variance and end up with a predictor
with a smaller RMSE. In many cases, this can be achieved via shrinkage.

2 The precursor: James-Stein

One of the most egregious examples of shrinkage in practice was provided in
James and Stein (1961). The problem seems somewhat artificial, but provides a
surprising example for a seemingly innocuous and straightforward problem.

Imagine your m-dimensional DGP is y ~ A (p, 02 I), with o known, and you
have only one observation, so n = 1. How do you estimate p? Of course, the
most natural estimator of p is the sample average, which coincides with your
only observation, y, if n = 1, so it would seem natural to use that.2 However, the
statistic

(m—-2)o? )

vy
can be proven to dominate the ML in terms of RMSE for m > 3, which may come
a bit as a surprise. Note that fijs is just the “obvious” estimator multiplied by a
scalar that, in most cases, is between 0 and 1. Hence the idea of shrinkage.

The problem above sounds somehow artificial: however it can be made more
realistic by conceding that the variance is unknown or that you have more than

ﬂ]s=(1—

11f the third equality leaves you perplexed, remember that E [7— m] = 0 by definition.
2Using the sample average has an obvious justification as a method-of-moments estimator,
but it’s also the maximum likelihood estimator.



one observation, but the result still stands.® This gives you the idea that shrink-
age towards zero could actually help in terms of RMSE.
In the context of linear models like

Vi=XxiB+¢;, )

an extension of the James-Stein idea was proposed in Copas (1983), but is not
particularly popular. The shrinkage estimators that practitioners use most of-
ten are based on optimizing an objective function that balances (a) the sum of
squared residuals and (b) the “size” of the elements of the estimator vector B
Since there are different ways to define “size”, you get different estimators. When
the dimension of x; is possibly verylarge, shrinkage can be very effective in fore-
casting.

3 Model selection via classical methods

In a way, one could think that a crude way to perform shrinkage is by data-based
model selection. Given the usual linear model

Vi=x;B+¢;,

where x; is a k-element vector, it is easy to see that the number of different
model one can have by selectively excluding a subset of regressors (that is, fixing
the corresponding coefficient to 0) equals 2 . For example, if X, =la;, b; cil,
so k = 3, the number of different models you can select is 23 = 8:

1 2 3 4 5 6 7 8
a; v v v v
b; v v v v
Ci v v v Y

When you choose one of the possible 2* alternatives, you’re implicitly shrink-
ing some of the coefficients to 0 (the ones for the excluded variables), while leav-
ing the others unrestricted. The idea is to make this decision on the basis of the
available data.

It is quite obvious that, in a real-life problem, a complete exploration of the
model space is unfeasible. For example, suppose that we'd like to choose via the
“best” model among the possible alternatives by selecting the one with the low-
est BIC. Suppose also that the CPU time to compute the BIC for a given model is
one thousandth second, so you can evaluate 3600 x 1000 models in one hour. If
k =30, the CPU time to evaluate all possible models is

30

time = ————— =298.26,
3600 x 1000

3See the Wikipedia page for more details.


https://en.wikipedia.org/wiki/James-Stein_estimator

which is nearly two weeks of non-stop computation. You wouldn't want to waste
all that electricity, would you?

There are techniques for speeding up the process, which are known as “step-
wise” regressions. The main two variants are the so-called “backward” and “for-
ward” regressions. With the former, you start with the full model and keep drop-
ping the least significant regressor until all the remaining ones are significant
at a given level (usually, 10%). With the latter, you start from a minimal model
(typically, constant only), and then you select the explanatory variable whose
inclusion reduces the SSR the most;* then you keep going until none of the re-
maining regressors enhances the fit of your model significantly.

These two techgniques may or may not arrive at the same model, but are
generally quite effective and perform rather well in out-of-sample forecasting.
You must be careful on using them as model selection tools if you need hypo-
thesis testing, since it can be proven that the usual OLS formulae for models
whose regressors have been selected via a stepwise procedure need some ad-
justments. However, this is not a big problem in a prediction scenario.

4 Ridge regression

The so-called ridge estimator has a long history in econometrics: it was used,
originally, to to avoid collinearity and handle cases when “reasonable data col-
lection results in an X’X with one or more small eigenvalues” (Hoerl and Kennard,
1970, p. 56). This means, in practice, in cases when the sample size n is not
much larger than the number of regressors k and/or the columns of X are very
collinear. In these cases, the smallest eigenvalue of X'X is near zero, so (X'X)~!
becomes a matrix with huge numbers.
The idea is to boost X'X away from near-singularity by adding a positive
scalar A to its diagonal:
B=[XX+AI]"' Xy )

In fact, it’s a minimiser: it can be proven that 3 can be defined as

B = Argmin e€'e, 3)
B'B=t
which is equivalent to®
B =Argmin e'e+ 1-|3l/3 4)
BeRk

where the scalar A controls the amount of shrinkage and || 3] |§ is a fancy way of
writing 8’3 = Zle ,Bf (see Section A.1 for more details). The || ,Bllg term is often
called an “¢, penalty” term.

4There is a clever algorithm for computing this quickly.
5If you don't believe me, write the Lagrangean for the problem (3).



Note that in a linear model each element of the vector 3 is related to the
unit of measurement of the corresponding regressor. Hence, the solution to the
problem above changes if we decide to measure a certain regressor in metres,
centimetres, feet or inches. To get rid of this potential ambiguity, data in X are
usually standardised, and we will assume from here on that the all elements on
the diagonal of X'X are equal to n. Re-tranforming 3 to any unit you want is
clearly trivial.

Of course, when A = 0 you get OLS: 3 = (X'X)~'Xy. For A — oo, 3 — 0 (but is
never actually 0). By rewriting (2) as

B=[XX+AI"' XXB=T3

you see that ,3 is a linear transformation of B, in which the matrix T is (X'X)
“divided by” a matrix that’s “bigger” than (X'X), and therefore is shrunk towards
0 (in fact, if X'X is a scalar matrix, B is a scalar multiple of B).

The ridge estimator could be also given an “added observations” interpreta-

tion:®
]
0
and @ is just OLS on the above.
Note that shrinkage is primarily used as a means to improve the efficiency
(in terms of RMSE) of predictions. We know that 3 is biased and inconsistent
and using it for inference purposes is rather complicated. This is the reason
why, although it is possible in principle to calculate the covariance matrix for 3,
this is almost never done.
Moreover, a quick and neat numerical solution is available using the singular
value decomposition (SVD for short):’

X =

y:

X
\/II]

X=UdV,

where [ am using the notation (d) to indicate a diagonal matrix, with the vector
d on the diagonal. Therefore,

XX+AI = Vd?*+ AV
XX+AD™" = VKdE+ANT'V
and therefore
B=Vd?+A1"'VV(dyU'y=V'(h)U'y
where h; = %. This is useful because, given U and V (whose computation is

fast) you can compute 3 for any A with no matrix inversion (nice).
This is also useful for computing the “effective degrees of freedom”, which
are then used as an ingredient in optimising A via AIC, BIC or Mallows’ C,. This

6Bayesian, really, but I digress.
“See section A.2.



number can be seen as a generalisation of the concept of “number of paramet-
ers”. Of course the number of elements of 3 is k, but we have to take into account
that 3 is the outcome of an optimisation strategy in which the optimal value for
B is shrunk towards 0, so it is somewhat constrained: in the limiting case when
A — oo, ,5 =0, so the number of “effective” parameters would actually be 0.

A neat way to see this is by considering the model’s fitted values:

y=X3.

If we take the extreme case A = 0 then ridge is OLS, and therefore y = Pxy. In
this case, we can think of the fitted value as the projection of y onto the space
spanned by the columns of X.

A neat result in matrix algebra (which I'm not proving here) is that the di-
mension of the space pertaining to a given projection matrix can be recovered
by simply computing its trace, that is the sum of its diagonal elements. The di-
mension of Sp (X) is therefore equal to®

tr (Px) = tr (XX'X) X)) = tr (X'X) " 'X'X) = tr (]) = k.

For A > 0, the fitted values can be computed by extending slightly the usual nota-
tion and defining
Py =X[X'X+AI]'X

so that
§=X[X'X+AI] ' X'y=Px,y.

Note that, for A > 0, Px , is symmetric but not idempotent. We define the “effect-
ive number of parameters” as the trace of Px ,, so the case A = 0 (that is, OLS)
would just be a special case. By using the singular value decomposition, this is
easily computed as

tr (XXX +AD X)) = tr (W) VV'(hyU') = tr ((d)(h)) = tr ((3)) = /4

2

d?
where y; = = hence,
1

2

df fl i (5)
(< = .
i=1 dl2+/1

Clearly, this number is k for A = 0, and it’s a decreasing function of A, that tends
to0as A — oco.

The practical consequence of this result is that if you choose A via criteria,
such as the BIC, in which the number of parameters of the model counts, you
must make sure you're using the quantity above instead of k.

8The key algebra trick needed here is tr (AB) = tr (BA).



5 LASSO

The LASSO is an acronym for “least absolute shrinkage and selection operator”,
and was first proposed in Tibshirani (1996): the basic idea is similar to the one
used in ridge regression, with the difference that the penalty term uses the ¢,
metric instead.

B = Argmin e’e = Argmin e'e+Al|8;1h. (6)
YilBjl=t BeRF
Like for the ridge estimator, the columns of X must be standardised for obvious
reasons.

Typically, in the optimal solution some of the elements
of B are 0 when A is away from 0, so the advantage is that
you perform shrinkage and model selection at the same
time. This feature has helped the LASSO become enorm-
ously popular in the past 20 years.

In fact, contrary to what happens with the ridge estim-
ator, with the ¢, penalty term you have a (data-dependent)
value of A, above which 3 = 0. Therefore, if we call this A, it
only makes sense to consider values of A between 0 (where
you get B =) and A (where you get B=0).

Another difference from the ridge estimator is that you ROBERT
don't have a closed-form solution, so 3 has to be found by TIBSHIRANI
numerical methods. One of the most popular is ADMM. These methods are usu-
ally quite fast and robust, so this is unlikely to be a problem in practice.

It would be nice if the LASSO had the oracle property, which is basically the
property by which the procedure

* selects the non-zero coefficients correctly, and

* has an asymptotic distribution that is the same you'd have if the true struc-
ture of the model was known in advance.

Unfortunately, it doesn’t; however, there is a variant, called the adaptive LASSO
by Zou (2006), that does.

5.1 Choice of 1 in LASSO estimation

The existence of an upper bound for A in a LASSO model makes it very natural
to think in terms of s = A/, which is between 0 and 1, and try a grid of values.
Then, you choose one either via the BIC or via cross-validation (fold-wise).

In other words, you estimate 3 by solving problem (6) for different values of
s, usually arranged in a logarithimic grid, eg

s=[ 0.001, 0.01, 0.1, 1 ]



and you compute your criterion of choice for each.

You then choose s (and hence 1) by picking the values that yield the best cri-
terion, or by a somewhat more conservative approach known as the “one stand-
ard deviation rule” (see Hastie et al., 2009, sec. 7.10.1).

6 Elastic net

B = Argmin e'e+ A 1_—“||ﬁ||§ +allBlh

BeRk 2
Thus a =1 gives LASSO, a = 0 gives Ridge, and anything between gives a com-
bination. The elastic net is often seen as a very good approximation to the prob-
lem

B = Argmin ee
l18llp=t
for 1 = p < 2, that is, something in between tthe ridge and lasso estimators. In
practice, for @ = 0.5, which is a value used quite often, you get an estimator that
contains quite a few zeros, but not as many as you would get with the lasso.
Quoting from (Efron and Hastie, 2016, p. 316):

When the predictors are excessively correlated, the LASSO performs
somewhat poorly, since it has difficulty in choosing among the cor-
related cousins. Like ridge regression, the elastic net shrinks the
coefficients of correlated variables toward each other, and tends to
select correlated variables in groups.

So the elastic net seems to perform rather well in real-life problems.

A Assorted results

A.1 Norms

How long is a vector? In other words, given a point in a k-dimensional space,
how do we define its distance from the origin? The usual Euclidean norm is

defined as
1/2

[x|]| = vX'x =

k
2%
i=1

It turns out that in some contexts it is useful to generalise the expression above
by considering

1/p

X1, = : )

k
> lxil?
i=1




where p = 0. Itis possible to verify that the expression above, known as ¢ ,-norm,
satisfies all the formal requirements that a distance must have. Of course, when
p = 2 you have Euclidean distance, but there are two more interesting cases.”

4R
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Figure 2: Shape of a circle for various values of p

When p = 1, the norm is simply the sum of the absolute values. The limit-
ing case when p — oo is also interesting, because it gives you the the maximum
element (in absolute value) of x. So, for example, if x = [-3,0,4,0]’

Xl =1-3[+141=7, [xll2=V32+4%=5, [&Xllec=4.

If you take the definition of a circle as “the set of points at the same distance
from the origin”, then Figure 2 shows you what a circle looks like for various
values of p.

A.2 TheSVD
Consider an r x ¢ matrix A with rank k. With no loss of generality, let’s say that
O<sk=scsr,

so Aisa “tall” (but possibly square) matrix, whose rank could be non-full. Then,
it is always possible to express A as

A=Ud)V (8)
where
1. Uisar x ¢ matrix, with U'U = I.

2. (d) is a ¢ x ¢ diagonal matrix; the vector on the diagonal d contains k pos-
itive entries and ¢ — k zeros.

3. Visacxcmatrix, with VV' = V'V =1.

9Readers with a penchant for microeconomics will doubtlessly recognise the similarity with
the CES production funciton.



A few fun facts: the generalised inverse of A equals as A* = U(d*)V, where
d* is a a vector such that

df =

1

0 ifd;=0
l/di ifdi >0 °

Additionally, it can be proven quite easily that the scalars d; are the square roots
of the eigenvalues of A’A. Finally, the OLS statistic can be written as 3 = X"y.
Cool, huh?
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