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1. Abstract
In [1]  we study an inverse problem for a parabolic partial differential equation. The parabolic partial differential equation considered  is the Fokker Planck equation associated to a  system of stochastic differential equations and the inverse problem studied consists in finding from suitable data the values of the parameters that appear in the coefficients of this Fokker Planck equation, that is of the parameters that define the system of stochastic differential equations. The data used in the reconstruction of the parameters are observations made at discrete times  of the stochastic process solution of the system of stochastic differential equations. That is, the data of the inverse problem are a “sample” taken from some of the components of the vector solution of the stochastic differential equations and not, as usual, observations made on the solution of the parabolic equation. The choice of the system of stochastic differential equations and of the data used in the inverse problem  are motivated by applications in mathematical finance. The stochastic differential equations presented can be used to model the dynamics of the  log-returns of the index of some classes of hedge funds, such as, for example, the so called “long short equity”  hedge funds and of some auxiliary variables.  The solution of the inverse problem proposed is obtained through the solution of  a filtering and of an estimation problem. The solution of the last two problems is based on the knowledge of the joint probability density function of the state variables of the model conditioned to the observations made  and to the initial condition. This  joint probability density function is solution of an initial value problem for the Kushner equation that in the circumstances considered here can be written as a sequence of initial value problems with  appropriate initial conditions for the Fokker Planck equation associated to the system of stochastic differential equations. An integral representation formula for this probability density function is derived and used to develop a numerical procedure to solve the estimation problem using the maximum likelihood method. The computational method proposed has been tested on synthetic data and  the results obtained are presented. This website contains some auxiliary material useful to understand  [1] and contains some animations and the description of some numerical experiments. A more general reference to the work of the authors and of their coauthors in mathematical finance is the website:  http://www.econ.univpm.it/recchioni/finance.

 

 2. Introduction

Assuming the log-return of the stock prices index, the log-return of the index of a suitable class of  hedge funds (i.e.: for example “long short equity” class) and  the stochastic  variance of the stock prices index  as state variables and the log returns of the index of the stock prices and  of the index of the hedge funds class observed at discrete times as observations, we study the problem of forecasting (tracking) the unobserved and time-varying stochastic variance when the model parameters and initial condition are known using the observations (filtering problem) and the problem of estimating the model parameters and  the unknown initial  stochastic variance using the observations (estimation problem). The solution of this last problem is needed in order to use the model proposed to  forecast in real situations future log returns of the stock prices and hedge funds indices.  

Let xt , zt, and vt be the state variables at time t>0 that is, respectively, the log-return of  stock prices index, the log-return of the index of the hedge funds class and the stochastic variance of the stock prices index at time t>0. We assume that the stochastic process (xt , zt , vt ), t>0, is solution of  the following system of stochastic differential equations:
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where  Wt1, Wt2, Wt3 , t>0, are standard Wiener processes such that W01=W02= W03 =0,  dWt1, dWt2 , dWt3 , are their stochastic differentials and  (dWt1dWt2 (= (1,2dt, (dWt1dWt3 (= (1,3dt, (dWt2dWt3 (= (2,3dt where  ( ( ( denotes the mean of  ( and (1,2,(1,3,(2,3([-1,1] are constants  known as correlation coefficients, 
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 is a real constant related to the behaviour of the mean of the stock prices index log return, associated to the stochastic process of the stock prices index St ,  t>0. Note that the stochastic variance vt, t>0,  is assumed to be described by a mean-reverting process with speed ((0 and parameters ((0 and ((0, that is by equation (3). The  stochastic differential equations (1), (3) are known as  Heston model  [2]. Equation (2) has been introduced to model the log-returns of the indices of suitable classes of hedge funds (such as, for example, the long short equity class). In fact equation (2) says that dzt is the sum of (dxt and a random disturbance given by  (
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dWt3, where β and γ are real constants.  If we interpret zt, t>0, as the log-return at time t of the index of one of these classes of hedge funds, xt, t>0, as the log-return at time t of the stock prices index, for example the S&P500 index, and vt, t>0, as the stochastic variance of  xt, t>0, equation (2) can be regarded as a reasonable translation in the continuous time setting of the findings of the time series analysis presented in  [3] and the system (1), (2), (3) can be interpreted  as a model to explain the dynamics of  the log-return of the index of one of the classes of hedge funds mentioned previously  that uses the log-return of the S&P500 index and its stochastic variance as explanatory variables. We remark that the models proposed in  [3] are discrete time models.
 The equations (1), (2), (3)  must be equipped with an initial condition, that is:
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Here 
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, (, (, (, (, ( and (1,2, (1,3, (2,3  are real constants and are the model parameters that we want to estimate. Hence, the parameters and unknown initial condition component of the model (1), (2), (3) that we want to estimate are   
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  is positive with probability one, vt, solution of  (3),  (5)  remains positive with probability one for t>0.

We suppose that at discrete times 0=t0<t1<t2<…<tn<tn+1 =+(,  the log-return of the  stock prices index and the log-return of the index of a special class of hedge funds are observed and let  Ft= {(
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) : ti  (t}, t>0, be the set of the observations up to time t>0 of the log-returns of the stock prices index xt and of the log-returns of the index of the hedge funds, that is for i=1,2,...,n, let 
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 be the observation of the log-return of the stock prices index and  
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 be the observation of the log-return of the hedge funds index at time t=ti . We assume that the observations are error free, that is we assume 
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 be the vector of the model parameters and of the initial stochastic variance, where the superscript T denotes the transpose operator. We use the notation t0 =0 and F0={(
[image: image26.wmf]0

0

0

v

~

,

z

~

,

x

~

)}to simplify some of the formulae that follow. 
3. Filtering problem

Let us assume the vector ( known, we focus on the problem of forecasting the state variables  from the observations previously described. This problem is a filtering problem, where the stochastic differential equations (1), (2), (3) represent the “state equations”, 
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at time t0 is the initial condition and, for i=1,2,...,n,   (
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 is known. The solution of this  filtering problem is based on the knowledge of the joint probability density function 
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(0,+() , t>0, of the state variables conditioned to the observations Ft, t>0, and to the initial condition (4), (5), (6).

The joint probability density function  
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(0, +() , t>0, of having xt=x, zt=z, vt=v, t>0, conditioned to the observations Ft, t>0,  is solution of the following equations [1] : for i=0,1,...,n:
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with initial condition: for i=0:
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 and for i=1,2,...,n:
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Once we know the joint probability density [image: image54.wmf]p
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(0, +(), t>0, we can forecast the values of the random variables (xt, zt ,vt), t>0, conditioned to the observations using the quantities  
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 given by:
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The quantities 
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 can be regarded as the solution of the filtering problem.
Let G(x,z,v,t,x',z’,v',t'|(), (x,z,v), (x',z’,v') ((-(,+()[image: image63.wmf]´

(-(,+()[image: image64.wmf]´

(0, +()  , t>t'>0, be the fundamental solution of (7) whose expression is given in [1].   

Using the function  G the solution  of problem  (7), (8), (9) can be written as follows: 
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and for i=1,2,…,n:    
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where   
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The evaluation of  
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 (0, +(), t>0, for i=1,2,...,n, on a grid of N3 points in the (x,z,v) variables with a naïve quadrature procedure applied to formula (14) using N quadrature nodes in each integration  variable requires O(N6) complex multiplications when N goes to infinity. In fact (14) due to the fact that the fundamental solution G is obtained computing a two dimensional integral can be regarded as a three dimensional integral. In [1] using:
( a wavelet expansion [1], [5] , [6] of the integral kernel appearing in  (14) and of the function (15), 

( a truncation procedure that exploits the sparsifying properties of the wavelet expansion,

( a suitable expansion in powers of a  time step and the Fast Fourier Transform (FFT),  
we reduce the computational cost of the previous computation from O(N6) to N1O(N3log N) complex multiplications when N goes to infinity, where N1 is independent of N. Note that N1 is the number of the wavelet functions remaining in the expansion of the integral kernel after the use of the truncation procedure.

Using the estimates (10), (11), (12) we can forecast the values of the log-return of the stock prices index  xt, t>0, of the log-return of the hedge funds class index zt, t>0, and of the stochastic variance vt, t>0, coherently with the observations  Ft, t(0. The continuous update in time of  
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 is the “trajectory tracking” of (1), (2), (3), (4), (5), (6). The continuous update in time of 
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The quality of the forecasted values 
[image: image83.wmf]0,

t

),

v

ˆ

,

z

~

,

x

ˆ

(

Θ

|

t

Θ

|

t

Θ

|

t

>

depends on the variance of the random variables xt, zt  vt, t>0, conditioned to the observations, that is we can estimate the quality of the estimates (10), (11), (12) computing respectively the quantities:
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The estimates (10), (11), (12) are good, when the variances (16), (17), (18) are small.

Click here to download a digital movie showing the trajectory  tracking.

Click here to download a digital movie showing the evolution in time of the integral with respect to x of the joint probability density function conditioned to the observations obtained solving the filtering problem . That is the digital movie shows the evolution in time of the function D(z,v,t), 
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In the trajectory tracking shown in Figure 1 and in  the digital movie showing the trajectory tracking  the solid line represents the true trajectory made of the values (xt, zt vt), t([0,24/252.5], obtained computing numerically for t>0  with Euler method one trajectory of the stochastic differential equations (1), (2), (3) with the initial condition (4), (5), (6)  with  
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; the dashed line represents the trajectory followed by the forecasted values 
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  t([0,24/252.5],  obtained solving the filtering problem computing the integrals (10), (11), (12) and using the data shown in Table 1. The squares and the asterisks  indicate, respectively, the values of  (xt, zt vt)  and of  
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 at the observation times t=ti, i=0,1,...,5. We have chosen  ( = (0.026, 5.94, 0.306, 0.01159,1,0.1, -0.576,0,0, 0.5)T. We note that  (,  (,  (1,2, (1,3, (2,3  are adimensional quantities and that  
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of the parameter vector ( are expressed in annualized unit, that is in the unit 1/year. We use a “year” made of the average number of trading days per year, that is made of  252.5 days, so that for example t=24/252.5 corresponds to the end of the trading day number 24 of the regular year.
	i
	ti
	
[image: image99.wmf]i

x

~


	
[image: image100.wmf]i

z

~



	0
	0
	0
	0

	1
	4/252.5
	(0.1046324981
	-0.09423814923

	2
	8/252.5
	-0.0389636566
	-0.03170475035

	3
	12/252.5
	-0.1106878449
	-0.09375359522

	4
	16/252.5
	0.01355863752
	0.036249189791

	5
	20/252.5
	0.04209650394
	0.053437008036


Table 1. The data of the filtering problem

Below we show two figures (Figure 1 and Figure 2) that help the understanding of the quality of the estimates obtained solving the filtering problem. We remind that Figure 1 shows the trajectory tracking obtained as solution of the filtering problem. In particular the solid line represents the

true trajectory made of the values (xt, zt vt), t([0,24/252.5],  obtained computing  with  Euler method one trajectory of the initial value problem (1), (2), (3), (4), (5), (6), the dashed line represents the trajectory followed by the forecasted values of  
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, t([0,24/252.5]. Figure 2 shows ((xt | Ft, (), ((zt | Ft, (),    ((vt | Ft, ()  versus time when t([0,24/252.5]. In the figures the time is expressed in days that is   
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                    Figure 1. Tracking of xt,  zt, vt  versus 
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4. Estimation problem

In Section 3 we have assumed ( known to solve the filtering problem but in real situations when the  model (1), (2), (3) is used ( is not known and it must be estimated from the knowledge of the observations. The dynamics of the stochastic process (xt, zt vt),  t>0, and of  the estimates   
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 t>0,  obtained from the solution of the filtering problem, depend on the vector 
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be the set of the admissible vectors (. 
We solve the problem of estimating the vector ( from the observations using the maximum likelihood method. That is we search the vector ((M that maximizes the following (log-)likelihood function: 
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                                    (19)
Note that (19) represents the sum of the logarithms of the integrals of the transition probability densities [image: image110.wmf]p
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(xi+1, zi+1,v,ti+1|Fti ,(), i=0,1,...,n-1. The function F(() represents the  (log-)likelihood of the parameter vector  (  given the observations Ft  ,  t>0, and the initial condition 
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 at time t=t0. 

In order to maximize the (log-)likelihood function shown in (19), we use an iterative optimization procedure that searches the maximum likelihood estimate (* solution of  the maximization problem:
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starting from an initial guess (0(M. 
The iterative procedure that solves the optimization problem (20) using  (0 as initial guess finds during the iterations the admissible vectors (k,,  k=1,2,...,iter, where iter is the maximum number of iterations allowed. The vectors (k, k=0,1,…,iter, are such that  F((k+1)(F((k), k=0,1,…,iter-1.

In the first numerical experiment we use  as data of the estimation problem the same data used for the filtering problem that is the data shown in Table 1. These are synthetic data that were generated using  (=(true = (0.026, 5.94, 0.306, 0.01159,1,0.1 -0.576,0,0, 0.5)T. We choose as initial guess of the optimization procedure the vector (0=(true(1+0.8(), where ( has been sampled from 10-dimensional standard Gaussian variable with independent components.  We assume  (0(M if this is not the case we discard  it and we  sample the 10 dimensional Gaussian variable  again. 
We fix the maximum number of iterations allowed iter=100, we use the variable metric steepest ascent method described in [1] as optimization method to solve problem (20) and we use  the following stopping criterion:
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                                                                       (21)

where (1 is a given tolerance. Choosing (1 =0.001 the variable metric steepest ascent procedure stops at the iteration k=19, with (19=(0.025,4.765,0.252, 0.011,0.96,0.106, -0.521, 0.071,-0.019,0.492)T and we have F((19) ( 23.54, F((0) ( 12.91, and F((true) ( 23.10 .

Click here to download a digital movie showing the trajectory tracking for   ( = (k (M , k=0,1,2,…,19, obtained during the iterative optimization procedure and the true trajectory corresponding to the parameter vector (=(true obtained integrating numerically (1), (2), (3), (4), (5), (6).
 The second experiment  consists in analyzing  a series of daily observations during a period of two years, that is a series made of 505 observation times. Remind that we have considered a “year” made of 252.5 trading days. We consider 505 observation times corresponding to 1010 observations 
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, i=0,1,…,504, where we have chosen t0=0, x0=
[image: image117.wmf]0

x

~

=0, z0=
[image: image118.wmf]0

z

~

=0, v0=
[image: image119.wmf]0

v

~

=0.5. The data are generated integrating numerically with Euler method one trajectory of (1), (2), (3), (4), (5), (6) for the two years period. We choose the vector 
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   of the stochastic differential system that generates the data to be equal to the vector 
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 used in the previous experiment in the first year of data (i.e. when t=ti , i=0,1,…,252) and to the vector  
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 in the second year of data (i.e. when t=ti , i=253,254,…,504) where 
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 are given by: 
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=(0.026,5.94,0.306,0.01159,1,0.1,-0.576,0,0,0.5) T,  
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=(0.4,2,0.01,0.01,1,0.01,0.5,0,0,0.012) T.
Click on the names  to download the file containing the observations  
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 (samplezz.txt), i=0,1,…,504.
We solve problem (20) using a time window made of 9 consecutive observation times corresponding to 18 observations. In particular we divide the time interval [0,504/252.5] in 63 consecutive disjoint  time windows containing 8 consecutive observation times that is for j=0,1,…,62 the time values t=ti,j=t8j+i, i=1,2,…,8 belong to the same time interval. Note that when considering the time window j (j(1) we use the notation t0,j=t8j that is t0,j  is the last observation time of the  time window j-1. Note that 8(63=504 and that the observation time t=t0 is not considered in the time windows considered above. The observation time t=t 0  is associated to the first time window (j=0) and we use the notation t0,0=t0. We solve problem (20) using 9 consecutive observations that is  
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, at time t=ti,j i=0,1,…,8, that is for j=0,1,…,62 the time values ti,j=t8j+i, i=0,1,2,…,8 belong to the same time window. We solve 63 problem (20) starting from different initial guesses. In Figure 3 the diamond represents the vector 
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 and the length of the segment that joins the diamond and the square is proportional to the Euclidean norm  of the vector  
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, the eighth component of the vector  ( , that is the estimated correlation coefficient 
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Figure 3: Reconstruction of the parameter vectors 
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Click here to download a digital movie showing the points determined solving the  63 problem (20) described above as a function of the time window of the observations.
Figure 3 and the digital movie that shows the solution of the 63 problem (20) show that  the points obtained solving problem  (20) are concentrated on two disjoint segments one on the left and one on the right of the origin and that they form two disjoint clusters, that is, the solution of the 63 problems (20) corresponding to the time windows described previously  shows that two sets of parameters seem to generate the data studied. This is really the case. Moreover as expected the points of the cluster around (2 are those obtained by the analysis of the observations made in the second year.
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6. FORTRAN Code

The FORTRAN code distributed in this website computes the solution of the estimation problem (20) using the formulae outlined in Sections 3 and 4 and derived in [1] . The data of the estimation problem are those described in Section 4 and must be provided by the user. The FORTRAN code consists of two programs. 
The first program preproc.f  reads and writes on appropriate files the data given by the user, initializes the parameter vector (0 and computes the number of  wavelet coefficients needed after the truncation procedure in order to approximate satisfactorily the integral kernel contained in (14) associated to the initial guess (0. 

click here to download preproc.f 


The second program estimate.f  starting from the initial guess (0  generates a sequence of admissible vectors (k, k=1,2,…,iter, using a variable metric steepest ascent optimization procedure.
click here to download  estimate.f
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