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Preface

The concept ofvolatility refers to any phenomenon presenting features of instabil-
ity, unpredictability and a likeliness to change frequently, often without apparent or
cogent reason; in a word, a phenomenon that exhibits random variations. Therefore,
it is an essential element of almost all branches of science and the measurement of
its impact and effects is of paramount importance. This book mainly focuses on the
measurement of the statistical parameter which Bachelier (1900) called “nervosit´e”
(the coefficient of nervousness) of a market price and which nowadays is referred as
variance or volatility in the context of financial applications. Nevertheless, many of
the methods and results presented here could be applied to other disciplines (from
turbulence to chemistry, physics and even medicine).

Ideally, we start from the chapter“Volatility Estimation by Fourier Expansion”
in Malliavin and Thalmaier (2006) and follow the rapid development of Fourier-
Malliavin estimation theory over the last decade. The purpose of this book is to give
a picture of the state of the art concerning this theory and to suggest new directions
for its application in the study of financial markets. We aim to give the interested
reader a clear, comprehensive and self-contained book on the use of the Fourier-
Malliavin technique for volatility estimation, providing all the theoretical and nu-
merical tools needed to understand and apply the methodology to real cases. Specif-
ically, readers are given examples and instruments to implement this methodology
in various financial settings and some new applications to real data are proposed.
Detailed bibliographic references are pointed out to permit a study in depth. This
book will appeal to the financial econometrics and quantitative finance community
and, in particular, to PhD students, researchers and practitioners in these fields.

Chapter 1 briefly introduces the main elements, namely, various concepts of
volatility, the peculiar characteristics of market (high-frequency)data and the Fourier
analysis for financial time series. In Chapter 2 the reader is introduced to the basic
idea underlying the Fourier-Malliavin method and some intuitions on the method
are anticipated. Chapter 3 mainly focuses on estimating integrated volatility and
cross-volatility on a fixed time horizon, e.g., a day, while in Chapter 4 the Fourier
estimation of instantaneous volatility is studied. In Chapter 5 the efficiency of the

vii



viii Preface

estimation method is analyzed when the observed asset prices are contaminated by
market microstructure noise effects, as it happens when high-frequency data are em-
ployed. Chapter 6 gives some examples of the potential of the Fourier method to deal
with the real-time use of the volatility estimates. The essentials of the mathematical
background are presented in Appendix A, which enables the non-expert reader to
follow the theory presented in the book. Furthermore, Appendix B provides a col-
lection of MATLAB� codes useful for reproducing the numerical results contained
in the book.
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Chapter 1
Introduction

Labitur occulte fallitque volatilis aetas
(Ovidio, Metamorfosi, Liber X v. 519-520)

Measurement of the volatility/covariance of financial-asset returns plays a central
role in many issues in finance, e.g., risk and investment management, hedging strate-
gies, forecasting. In connection with financial markets the wordvolatility is usually
associated with the concepts ofrisk andopportunity, thus referring to a measure
(as well as a feeling) of the movements and uncertainty in the markets. As a mat-
ter of fact, the constant-volatility assumption prescribed by the Black & Scholes
model (Black and Scholes (1973)) does not account for some stylized facts such as
variance heteroscedasticity, predictability, volatility smile, covariance between as-
set returns and volatility (the so-called “leverage effect”). Therefore, a wide set of
time-dependent (stochastic) volatility models have been proposed to model asset-
price evolution and to price options coherently with this evidence. Nevertheless,
the volatility process is unobservable and its latency leads to the difficult task of
developing efficient methods to measure it.

Implied and Historical Volatility

To measure volatility, both forward- and backward-looking methods are adopted:
theimplied and thehistorical volatility approaches. The former infers volatility lev-
els by using options markets and has been privileged by practitioners for the purpose
of forecasting. The implied volatility of an option is the measure of volatility that,
when used in an option-valuation model, equates the theoretical value and the mar-
ket value. If option pricing models are valid, implied volatilities express the market
expectation about future volatility. The main reason for using implied volatility is
the assumption that the market as a whole “may know some things about the future
volatility in the stock that we don’t know”, Black (1975). Interested readers will
find empirical and theoretical studies in Rubinstein (1994), Dupire (1994), Derman
and Kani (1994) along with many others. More recently, a model-free measure of
implied volatility that equals the market risk-neutral expectation of the total return
variation has been introduced (see Britten-Jones and Neuberger (2000), Bollerslev
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2 1 Introduction

et al (2009, 2011)). On the contrary, the historical volatility measure is based on
the magnitude of recent (past) moves of the prices, namely the (annualized) stan-
dard deviation of the log-returns. Volatility can be computed throughparametric or
nonparametric methods (see, for instance, the insightful review by Andersen et al
(2010)). In the first case, the expected volatility is modeled through a functional
form of market or latent variables. In contrast, nonparametric methods address the
computation of historical volatility without assuming any functional form of the
volatility. The method studied in this book belongs to the second class. Finally,
filtering methods have been applied to infer the volatility as well as its empirical
distribution from historical asset-price observations, obtaining predictive distribu-
tions for multistep forecasts of volatility (among many, relevant contributions are
Jacquier et al (1994), Cvitanic et al (2006), Chronopoulou and Viens (2012)).

High-Frequency Data

In the stochastic modeling of financial markets, the instantaneous volatility is
described by the diffusion coefficient of a continuous time process. Measuring the
diffusion coefficient from the observed asset prices is a challenging task, since data
are not available continuously, but only on a discrete time grid. As volatility changes
over time, its computation through nonparametric methods concentrates on a small
time window (a day, a week), and high-frequency data are employed. In fact, the
recent availability of time observations for all quotes and transactions, namedultra-
high-frequencydata by Engle (2000), has improved the capability of computing
volatility efficiently, giving us new fundamental instruments and additional infor-
mation about variation in return volatility, i.e., in the second moments of returns.
Early recognition of this potential gain endowed by the use of high-frequency data
has been noted by Nelson (1990, 1991), Andersen and Bollerslev (1998). Sophisti-
cated technological tools and computer algorithms to rapidly trade securities have
contributed to make high-frequency trading strategies more widely used by practi-
tioners. Whereas at the turn of the twenty-first century, high-frequency trades had
an execution time of several seconds, this had decreased to milliseconds and even
microseconds by 2010.

At the same time, this fact poses new challenges to researchers both from the em-
pirical and the theoretical sides, as observed early on by O’Hara (1995), Hasbrouck
(1996), Goodhart and O’Hara (1997). In fact, the behavior of observed asset prices
departs from what is prescribed by theoretical models (frictionless price), being af-
fected bynoise microstructure effects deriving from bid-ask bounce, asynchronous
trading, infrequent trading and price discreteness, among others. Furthermore, when
computing covariances between returns recorded at the highest available observa-
tion frequency, returns are obviously asynchronous across different assets. Thus, the
estimation of covariances suffers from a downward bias as the sampling interval is
reduced (known as theEpps effect, Epps (1979)).

Most often, all these sources of microstructure effects are modeled as a nuisance
component, in the form of additive noise components or rounding errors; this is the
main approach followed in the present book. However, a very recent line of research
on high-frequency data pursues a more modeling-based approach. Examples of this
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include the artificial “zero-intelligence” order-driven market model of Gatheral and
Oomen (2010) and the Markovian queueing model of Cont and De Larrard (2013),
proposing simple and tractable stochastic models for the dynamics of a limit order
book in which orders to buy and sell are centralized and executed against the best
available offers in the limit order book. These equilibrium models of limit order
markets provide a glimpse into the dynamics of supply and demand and their role in
price formation and are an attempt to describe the complex mechanisms producing
microstructure effects.

Fourier Analysis for Volatility Measurement

Considering these specific characteristics of high-frequency data, a number of
alternative volatility and covariance estimators have been proposed in the academic
literature in the last twenty years. Most of them rely on thequadratic covariationfor-
mula, a classical result essentially due to Wiener, which permits the volatility in a
time interval (integrated volatility) to be recovered from the observed price process.
Therealized volatility-quadratic variationestimators have been intensively studied
and used for financial-econometrics purposes in a series of papers, and modifica-
tions of the realized variance estimator have been proposed to correct the bias due
to microstructure noise (see A¨ıt-Sahalia and Jacod (2014) for an updated bibliogra-
phy).

This book is devoted to studying an alternative nonparametric method proposed
in Malliavin and Mancino (2002a) to compute both the instantaneous and the inte-
grated multivariate volatility based on Fourier series. Starting with the original book
by Fourier (1822), Fourier analysis has been used in many fields. Fourier analysis
allows one to represent a set of data as a sum of sinusoidal functions. A function
of time, which is calledthe signal, is decomposed into the frequencies that consti-
tute it. Therefore, the Fourier transform is frequently called thefrequency domain
representation of the original signal. Fourier analysis has been extensively applied
to inference of processes in time-series analysis. However, these methods mainly
hinge on the availability of a very long series of data and on the stationary or er-
godic properties which are crucial for long time asymptotics. This fact contrasts with
the approach of high-frequency data, where a finite horizon is considered and infill
asymptotics (i.e., the time between two observations goes to zero) is performed,
which exploits tick-by-tick data. On the other hand, the underlying financial models
fail to have stationary or ergodic properties, unlike the usual time series asymptotics
prescribes. Regarding this point, the Fourier-Malliavin estimation approach differs
from methods commonly used in time-series analysis because it does not assume
any long range stationary condition as usually done in the statistical study of time
series when using the ergodic theorem to compute a spectral measure or some other
invariant from a single realization of the process. However, the fact that we need to
construct an estimator of the desired quantity using only a single realization of the
process is peculiar to financial experiments because, in contrast to other physical
experiments, averaging the quantities obtained in each time window, e.g., one day,
is meaningless.





Chapter 2
A First Glance at Fourier Method

Before tackling the volatility estimation procedure in details, in this chapter we in-
troduce the basic idea underlying the Fourier-Malliavin method, that is a general
identity relating the Fourier transform of the (multivariate) volatility function with
the Fourier transform of the log-returns. Moreover, some peculiar features of the
method are briefly presented which will be more deeply addressed in the next chap-
ters. The Fourier-Malliavin method has been originally proposed in Malliavin and
Mancino (2002a) to reconstruct instantaneous multivariate volatilities from high-
frequency observations of diffusion processes. The authors’aim was to overcome
some difficulties arising from the application of the quadratic variation formula in
the commonly used realized covariation methods. The Fourier-Malliavin approach
is fully non-parametric and no stationarity assumptions are required.

2.1 Main Convolution Formula

The very first idea which led to the construction of the Fourier-Malliavin volatility
estimator consists in the mathematical link between the Fourier transform of theob-
servedasset prices and the Fourier transform of theunobservablevolatility process.
This section starts with an illustration of this main result.

From a theoretical viewpoint, suppose for the moment that the prices ofd assets
p(t) = (p1(t), . . . , pd(t)) are observed incontinuous timeover a time interval[0,T ]
and described byd continuous processes satisfying the following Itˆo stochastic dif-
ferential equations1

dp j(t) =
l

∑
k=1

σ j
k (t) dW k(t)+ b j(t) dt, j = 1, . . . ,d, (2.1)

1 The reader eventually unfamiliar with these dynamics for the price process can find a short
introduction in the Appendix A.1.1.

5



6 2 A First Glance at Fourier Method

whereW = (W 1, . . . ,W l) are independent Brownian motions andσ j
k and b j are

random processes satisfying mild regularity conditions which will be specified in
the following sections. From the representation (2.1) the(time dependent) volatility2

matrix is defined as the matrixΣ(t), whose (stochastic) entries are

Σ i, j(t) =
l

∑
k=1

σ i
k(t)σ

j
k (t), i, j = 1, . . . ,d. (2.2)

By rescaling the unit of time3 we can always reduce ourselves to the case where the
time window[0,T ] becomes[0,2π].

For any integerk, denote byF (Σ i, j)(k) andF (dpi)(k) the Fourier coefficients
of the volatility matrix entries and of the return process, respectively (see the defi-
nitions (A.10), (A.12)).

First Step: for any integerk, compute the Fourier coefficientsF (Σ i, j)(k) of
the spot volatilitiesΣ i, j(t) by means of the Fourier coefficients of the price
processp(t).

Theorem 2.1. Consider a process p(t) satisfying (2.1). Then, for any i, j = 1, . . . ,d,
it holds

1
2π

F (Σ i, j) = F (dpi)∗F (dp j), (2.3)

where the convolution productwhich appears in (2.3) is defined as follows: for any
i, j and for all integers k

(F (dpi)∗F (dp j))(k) := lim
N→∞

1
2N +1 ∑

|s|≤N

F (dpi)(s)F (dp j)(k− s). (2.4)

The convergence of the convolution product (2.4) is attained in probability 4.

We give a sketch of the proof that can be found in Malliavin and Mancino (2009). A
preliminary step shows that the driftb := (b1, . . . ,bd) of (2.1) gives no contribution
to the formula (2.3). Therefore, we can assumeb = 0. For any integerk and i =
1, . . . ,d, we set

Γ i
k (t) :=

1
2π

∫ t

0
e−ikτ dpi(τ ).

Then, by definition it holdsΓ i
k (2π) = F (dpi)(k). For any given integerN ≥ 1 and

any integerk with |k| ≤ N, define

γi, j
k (N) :=

1
2N +1 ∑

|s|≤N

Γ i
s (2π)Γ j

k−s(2π). (2.5)

2 In the econometric literature the termvolatility is often used as a synonym ofvariance.
3 The analogous expressions for the Fourier transforms on[0,T ] are given in Appendix A.2.
4 See Definition A.4.
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Note that the limit of (2.5) forN → ∞ is equal to (2.4). By Itˆo formula (A.7), it
follows that

γi, j
k (N) =

1
2π

F (Σ i, j)(k)+Ri, j
N (k), (2.6)

where

Ri, j
N (k) :=

1
2N +1

∫ 2π

0
∑

|s|≤N

Γ i
s (t)dΓ j

k−s(t)+Γ j
k−s(t)dΓ i

s (t) .

Therefore, the result holds true if we prove that, for any fixedk, R i, j
N (k) converges to

0 in probability, asN → ∞. By writing Ri, j
N (k) more explicitly, it is evident that it is

equal to the sum of two analogous terms, each having the following expression

1
(2π)2

∫ 2π

0
dp j(t2)

∫ t2

0
eikt1DN(t1− t2)dpi(t1), (2.7)

whereDN(t) is the rescaled Dirichlet kernel

DN(t) :=
1

2N +1 ∑
|s|≤N

eist =
1

2N +1

sin[(N + 1
2)t]

sin t
2

. (2.8)

By Itô energy identity (A.4) and a bit of stochastic calculus, the variance of (2.7) is
proved to be less or equal to

C
∫ 2π

0
D2

N(u)du =C
2π

2N +1
,

whereC is a constant, not depending onk. For the last identity, see e.g. Malliavin
(1995). Therefore, lettingN → ∞, from (2.6), the proof is completed. �

As soon as all the Fourier coefficients of the volatility matrix’s entries have been
computed, it suffices to apply an inversion formula to obtain the time dependent
volatility function.

Second Step: reconstruct the spot volatility matrixΣ(t) using the Fourier-
Fejer inversion formula.

The reconstruction of the stochastic function of timeΣ i, j(t) from its Fourier coeffi-
cients can be obtained as follows: fori = 1, . . . ,d and|h| ≤ 2N, compute the Fourier
coefficients of pricesF (dpi)(h) and, for any|k| ≤ N, i, j = 1, . . . ,d, define

F (Σ i, j
N )(k) :=

2π
2N +1 ∑

|s|≤N

F (dpi)(s)F (dp j)(k− s). (2.9)
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If the volatility matrix has continuous paths, namely the functiont → Σ i, j(t) is con-
tinuous5, then the Fourier-Fejer summation gives almost surely6

lim
N→∞ ∑

|k|<N

(1− |k|
N
)F (Σ i, j

N )(k)eikt = Σ i, j(t) , for all t ∈ (0,2π). (2.10)

Remark 2.1. In view of the estimation problem we are going to study, we emphasize
that all the Fourier coefficients ofΣ i, j(t), that is

1
2π

∫ 2π

0
e−iksΣ i, j(s)ds,

are obtained by the formula (2.3). In particular, the 0-th Fourier coefficient

F (Σ i, j)(0) :=
1

2π

∫ 2π

0
Σ i, j(s)ds

is computed. When multiplied by 2π, this coincides with a financially relevant quan-
tity, that is theintegrated cross-volatility.

Remark 2.2. It is possible to implement the Fourier method by expanding the volatil-
ity functionΣ i, j(t) as a series of sines and cosines, as it has been originally done by
Malliavin and Mancino (2002a). This result is a direct consequence of Remark A.1.

2.2 Specific Features of the Fourier Approach

The result in Theorem 2.1 is the basis for constructing the Fourier estimator of
volatilities from discretely observed asset prices. In this section we highlight a few
peculiar features of the Fourier estimation approach which result from (2.3) and
(2.10). These properties will be further studied throughout the book, even in com-
parison with other estimators.

Define the discrete analogue of the quantities introduced in Theorem 2.1. For
notational simplicity, let us consider the case of two assets, which trade, respectively,
on discrete grids{0 = t j

0 < t j
1 < .. . < t j

n j = 2π}, with j = 1,2. It is worth noting
that we allow irregularly spaced observation times, as is usually the case with real
transaction prices, and even nonsynchronous observations across different assets.

For any integerk, |k| ≤ 2N, let us define the discrete Fourier transform for each
asset return

ck(dp j
n j
) :=

1
2π

n j−1

∑
l=0

e−ikt j
l δ

I j
l
(p j), (2.11)

5 If Σ i, j(t) has cadlag paths, then the limit (2.10) gives(Σi, j(t)+Σ i, j(t−))/2, see, e.g., Malliavin
(1995).
6 See Definition A.5.
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whereI j
l := [t j

l , t
j
l+1[ andδ

I j
l
(p j) := p j(t j

l+1)− p j(t j
l ), l = 0, . . . ,n j−1 with j = 1,2.

For any|k| ≤ N andi, j = 1,2, let us consider the discrete analogue of the convolu-
tion (2.4), given by

1
2N +1 ∑

|s|≤N

cs(dpi
ni
)ck−s(dp j

n j
).

In virtue of the identity (2.3), the last term, when multiplied by 2π, is the candidate
as estimator of thek-th Fourier coefficient ofΣ i, j. Therefore, we define

ck(Σ
i, j
ni,n j ,N

) :=
2π

2N +1 ∑
|s|≤N

cs(dpi
ni
)ck−s(dp j

n j
). (2.12)

Finally, the random function of time

Σ̂ i, j
ni,n j ,N,M(t) := ∑

|k|≤M

(
1− |k|

M

)
ck(Σ

i, j
ni,n j ,N

)eikt (2.13)

will be called theFourier estimatorof the instantaneous volatility matrixΣ i, j(t).
We highlight here some particular features of the just described estimation pro-

cedure that will be extensively studied in the following chapters.

The definition of the Fourier spot volatility estimator (2.13) relies on theinte-
grationof the price observations rather than on a differentiation procedure.

This property is peculiar of the Fourier approach, as opposed to the realized volatil-
ity type estimators (see the recent book by A¨ıt-Sahalia and Jacod (2014) for a com-
prehensive treatment of these estimators). To be more specific, let us recall the pro-
cedure leading to the realized spot volatility type estimators.

Consider the univariate case, that is the stochastic processp is defined by (2.1)
with d = l = 1. Firstly, volatility is computed over finite time intervals[0, t] (inte-
grated volatility), relying upon thequadratic variation formula defined by

〈p, p〉t := lim
n→∞ ∑

0≤k<t2n

(
p((k+1)2−n)− p(k2−n)

)2
. (2.14)

In fact, a classical result, essentially due to Wiener, states that the following identity
holds almost surely

〈p, p〉t =
∫ t

0
σ2(s)ds, (2.15)

whereσ2 is the volatility function (denotedΣ 1,1 in the notation of (2.2)). Then, the
spot volatility is derived from (2.15) by differentiation

σ2(t) = lim
h→0

∫ t+h
0 σ2(s)ds− ∫ t

0 σ2(s)ds
h

= lim
h→0

∫ t+h
t σ2(s)ds

h
. (2.16)



10 2 A First Glance at Fourier Method

As a consequence, the realized volatility type estimators measure the spot volatility
at t as (weighted) sample averages of increasingly finer sampled squared (or abso-
lute) returns over smaller and smaller[t, t + h] intervals. The procedure involves a
double asymptotics (forn → ∞ andh → 0) in order to perform both the numerical
derivative (2.16) and the discretization procedure (2.14). This immediately raises
important issues of efficiency and numerical instability, a critical point being the
choice of the length of the time intervalh.

The computation of the Fourier coefficients for each asset price (2.11) and the
Fourier spot cross-volatility estimator (2.13) requires neither equally-spaced
price observations nor preliminary synchronization of the observed data.

The Fourier estimator uses all the available data through (2.11): the possibility of
using all data avoiding any preliminary manipulation of them translates into the
direct use of unevenly sampled returns and even asynchronous data in the multi-
variate case. In fact, when recorded at the highest available observation frequency,
asset returns are asynchronous across different assets. On the contrary, the realized
covariance type estimators rely on thequadratic covariationformula, which states
that, fori �= j,

〈pi, p j〉t := ∑
0≤k<t2n

(
pi((k+1)2−n)− pi(k2−n)

)(
p j((k+1)2−n)− p j(k2−n)

)
(2.17)

converges almost surely, asn → ∞, to∫ t

0
Σ i, j(s)ds.

It is clear that the definition of quadratic covariation (2.17) requires the data to be
synchronous, thus these estimators suffer from a downward bias when applied to
asynchronous intraday data7.

The effectiveness of the Fourier spot volatility estimator (2.13) is obtained by
balancing three parameters: the numbers of datan j, the cutting frequencyN in
the convolution formula and the numberM of estimated Fourier coefficients
of volatility to be used in the inversion formula. It must holdM ≤ N ≤ n j,
j = 1, . . . ,d. A suitable choice of these parameters according with specific
market characteristics guarantees the efficiency of the Fourier estimator with
high-frequency market data.

In Section 5 we will show that the Fourier estimator needs no correction in order
to be statistically efficient and robust to some kind of market frictions at the same
time. This result is due to the following properties of the Fourier estimator: on one

7 This behavior is known asEpps effect, by Epps (1979).
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side, it uses all available data by integration; on the other side, the high-frequency
noise or short-run noise is ignored by the Fourier estimator by cutting the highest
frequencies. In other words, when efficiently implemented, the Fourier estimator
uses as much as possible of the available sample path without being excessively
biased by the impact of market frictions.

The Fourier estimator is defined as a global estimator, that is an estimator of
the patht → Σ i, j(t) over the whole time interval of interest.

For a local estimator, the bandwidths should be tuned with the specific timet con-
sidered. On the contrary, in the case of the Fourier estimator it is possible to choose
the cutting frequenciesN andM independently of the specific instant of time, still
obtaining accurate spot volatility estimates inside the whole observed time range, as
it will be shown in Section 4.1.2.





Chapter 3
Estimation of Integrated Volatility

The financial econometrics literature mainly focuses on theintegratedvolatility and
cross-volatility on a fixed time horizon, e.g., a day. Therefore, this chapter is devoted
to the estimation of these quantities. In the context of the Fourier estimation method,
the integrated volatilities are computed by simply taking the 0-th Fourier coefficient
in formula (2.12). We begin with the study of the univariate Fourier estimator of
integrated volatility, for the ease of notation; nevertheless, the results holding for
the univariate case can be easily extended to the multivariate estimator that will be
studied in Section 3.3, with special care to be paid for the asynchronous data case.
Then, we discuss the issue of feasibility for these results by providing an estimator of
the error asymptotic variance, calledquarticity. Finally, the properties of the Fourier
estimator versus different integrated volatility estimators proposed in the literature
are outlined.

3.1 Univariate Estimator

The main results presented in Chapter 2 explain why the Fourier estimation method
is defined to deal with multivariate problems by its own nature. However, for the
sake of simplicity, we first define the Fourier estimator of volatility in the univariate
case.

Let the asset price process follow the Itˆo stochastic differential equation

dp(t) = σ(t) dW (t)+ b(t) dt, (3.1)

whereW is a Brownian motion on a filtered probability space. Letσ andb be ran-
dom processes, adapted to the Brownian filtration (see Definitions A.2 and A.3) and
satisfying the following integrability conditions

E[
∫ T

0
b2(t)dt]< ∞, E[

∫ T

0
σ4(t)dt]< ∞. (3.2)

13
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For any positive integern, let Sn := {0 = t0,n ≤ ·· · ≤ tkn,n = 2π} be the trading
dates of the asset, i.e., the observation times of the asset price. For simplicity, in the
following we takekn = n and we often omit the second subscript. Denote byρ(n)
the mesh size of the partitionSn, which is defined asρ(n) := max0≤i≤n−1 |ti+1− ti|.
Moreover, letδi(p) := p(ti+1)− p(ti).

For any integers, |s| ≤ 2N, consider the discretized Fourier coefficients of the
asset returns

cs(dpn) :=
1

2π

n−1

∑
i=0

e−isti δi(p). (3.3)

Then, for any integerk, |k| ≤ N, define

ck(σ2
n,N) :=

2π
2N +1 ∑

|s|≤N

cs(dpn)ck−s(dpn). (3.4)

Note that (3.4) coincides with (2.12) fori = j. We will see in (3.11) that it converges
in probability to thek-th Fourier coefficient ofσ 2(t). In particular, fork = 0, it
converges to

F (σ2)(0) :=
1

2π

∫ 2π

0
σ2(t)dt.

Therefore, according to (3.4), theFourier estimator of the integrated volatility over
[0,2π], namely the random variable

∫ 2π
0 σ2(t)dt, is defined as

σ̂2
n,N :=

(2π)2

2N +1 ∑
|s|≤N

cs(dpn)c−s(dpn), (3.5)

wherecs(dpn) is given in (3.3). By substituting formula (3.3) into (3.5), the Fourier
estimator can be equivalently expressed as

σ̂2
n,N =

n−1

∑
j=0

n−1

∑
j′=0

DN(t j − t j′)δj(p)δj′(p), (3.6)

whereDN(x) is the rescaled Dirichlet kernel defined by (2.8). The representation
(3.6) helps us to compare the Fourier estimator with the volatility estimators based
on the quadratic variation formula (2.14). In fact, we can rewrite (3.6) as

σ̂2
n,N = RVn +

n−1

∑
j=0

n−1

∑
j′=0
j �= j′

DN(t j − t j′)δj(p)δj′(p), (3.7)

whereRVn denotes theRealized Volatility estimator, defined by

RVn :=
n−1

∑
j=0

(δj(p))2. (3.8)
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Different features of the Fourier estimation method are highlighted by (3.7).

The Fourier estimator incorporates not only the squared log-returns but also
the auto-covariances of any order along the time window.

The various order auto-covariances (namely, the second addend in (3.7)) contribute
to render the estimator robust to microstructure noise effect (this point will be dis-
cussed in Section 5). This feature has early been considered by Zhou (1996) and
recently used to correct the bias of the realized variance type estimators in the pres-
ence of microstructure noise, as in particular for the realized (subsampled) kernels
by Barndorff-Nielsen et al (2008).

The convolution product leading to (3.6) weights the auto-covariances of any
order, the weight being dependent on the number of frequenciesN, in addition
to the lag between observations.

The convolution product (3.5) can be weighted with different smoothing kernels in
order to filter progressively high modes, thus reducing microstructure noise effect.
For instance, in Section 5 we will also consider the following version of the Fourier
estimator

σ̃2
n,N :=

1
N +1

n−1

∑
j=0

n−1

∑
j′=0

FN(t j − t j′)δj(p)δj′(p), (3.9)

where

FN(x) := ∑
|s|≤N

(
1− |s|

N

)
eisx =

1
N +1

sin2((N +1) x
2)

sin2( x
2)

(3.10)

is the Fejer kernel.

3.1.1 Asymptotic Results

Assume that the price process is described by model (3.1). Asymptotic conditions
required for the irregular time grid are stated in Malliavin and Mancino (2009) The-
orem 4.1, as well as the details of the proofs.

Consistency. Suppose thatρ(n) → 0 asn → ∞. The following asymptotic results
hold in probability.

(i) Let ck(σ2
n,N) be defined in (3.4). For anyk, it holds

lim
n,N→∞

ck(σ2
n,N) = F (σ2)(k). (3.11)
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The consistency in probability of the Fourier estimator of the integrated volatility
(3.5) immediately follows from (3.11) fork = 0. Due to the relevance of the inte-
grated volatility estimator for applied purposes, we separately state this result.

(ii) Let σ̂2
n,N be defined in (3.5), then the following convergence in probability

holds

lim
n,N→∞

σ̂2
n,N =

∫ 2π

0
σ2(t)dt. (3.12)

Central Limit Results. The asymptotic error distribution is Gaussian, with optimal
rate1 and variance under the assumption that the relative growth rate between the
number of the Fourier frequencies and the number of data converges to a(1/2)k, k=
1,2, . . .. In this case, the following stable convergence in law2 holds

ρ(n)−1/2
(

σ̂2
n,N −

∫ 2π

0
σ2(t)dt

)
→ N

(
0,2
∫ 2π

0
σ4(t)dt

)
. (3.13)

The asymptotic variance is linked to the behaviour of the Dirichlet kernel weighting
the cross terms; more precisely, if we assume thatN/n → c > 0 asN,n → ∞, the
asymptotic variance is

1
2c̃2 r(c̃)(1− r(c̃))

wherec̃= 2c andr(x) = x− [x], with [x] the integer part ofx (see Clement and Gloter
(2011) Lemma 1 for details of this computation). Note thatη (c) = 0 if we choose
c = (1/2)k, k being a positive integer, andη (c) is positive otherwise. Moreover, it is
known that the Nyquist frequency isN = n/2, which leads to the choice ofc= (1/2)
as the most suitable here.

In Section 5 we will see that the possibility of choosing the cutting frequency
N << n is an important feature of the Fourier estimator when dealing with high-
frequency data. In fact, the market microstructure effects contained in high-frequency
data are ignored by the Fourier estimator by cutting the highest frequencies in the
construction of the estimator. WhenN/n → 0, the following limit theorem with
slightly suboptimal rate holds:

ρ(n)−1/(2γ)
(

σ̂2
n,N −

∫ 2π

0
σ2(t)dt

)
→ N

(
0,2
∫ 2π

0
σ4(t)dt

)
(3.14)

whereγ > 1 is such thatNγ = O(n). The proof can be found in Clement and Gloter
(2011).

Remark 3.1. The central limit results (3.13) and (3.14) are unfeasible, as the asymp-
totic variance 2

∫ 2π
0 σ4(t)dt is not known. However, in Section 3.2 we will see how

to estimate the integrated fourth power of the volatility process (namedquarticity)
by exploiting the estimated Fourier coefficients (3.4).

1 The optimal rate of convergence for a non-parametric estimator isn1/2.
2 For an introduction of the concept of stable convergence in law see, e.g., Aldous and Eagleson
(1978) and Jacod and Shiryaev (2003).
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3.1.2 Finite Sample Properties

The efficiency of the Fourier method for computing the integrated volatility has been
analyzed in several papers, see Barucci and Ren`o (2001, 2002), Hansen and Lunde
(2006b,a), Nielsen and Frederiksen (2008), Griffin and Oomen (2011). In particular,
it has been highlighted that one of the advantages of the Fourier method relies in the
fact that it allows us to compute volatility measures from unevenly spaced data. On
the contrary, most of the volatility estimators base their theoretical properties on
data uniformity so that the values of the process must be imputed on a uniform grid.
Nevertheless, the effects of such imputation on the quality of volatility estimates are
not negligible, as the following simulation exercise shows.

The analysis is based on Monte Carlo simulations. Suppose that the asset log-
price follows the continuous time GARCH(1,1) model proposed in Nelson (1990)

dp(t) = σ(t)dW1(t)
dσ2(t) = θ(ω−σ2(t))dt +

√
2λθσ2(t)dW2(t),

(3.15)

whereW1,W2 are independent standard Brownian motions. We setθ = 0.035,ω =
0.6365,λ = 0.2962 which are based on the daily Deutschemark-US dollar exchange
rate from October 1, 1987 to September 30, 1992 (see Andersen et al (1999b)).
We consider 1000 Monte Carlo repetitions starting from the initial valuesp(0) =
log100,σ 2(0) = 0.6365. High frequency unevenly sampled observations have been
generated as follows: a 6-hour trading period has been simulated by discretizing
(3.15) with a time step of one second, for a total of 21600 observations per day.
Then, observation times have been extracted in such a way that the duration between
different trades is drawn from an exponential distribution with mean equal toτ = 5
seconds, which corresponds to a value observed for many financial time series. As
a result, we have a dataset{t j, p(t j), j = 0, . . . ,n} with t j unevenly sampled.

Provided a uniform grid withm+ 1 points (0,∆ t,2∆ t, . . . ,T ), with ∆ t = T/m,
the daily integrated volatility can be computed by means of the Realized Volatility
as follows3

RV ∆ t :=
m−1

∑
i=0

[p((i+1)∆ t)− p(i∆ t)]2 . (3.16)

Theoretically, as the Wiener theorem ensures the convergence of (3.16) to the in-
tegrated volatility, an arbitrary precision in the estimate of the integrated volatility
can be reached by increasing the frequency of observations. Nevertheless, when a
process is discretely observed, in order to compute the sum of squared returns one
has to impute the values of the process on the uniform grid. This can be done for in-
stance by linear interpolation of adjacent prices. However, interpolation introduces
a bias that invalidates the consistency of the quadratic variation estimator. Note also
that while the Fourier method uses all the observations, the sum of squared intraday
returns may use only a fraction of them, i.e., for lowm some observations are lost.

3 Note that the definition of the Realized Volatility is the same as (3.8), but we prefer here to point
out the time step size∆t instead of the number of observations.
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On the other side, when using high-frequency data, market microstructure ef-
fects make the asymptotic result useless because the microstructure effects swamp
the integrated volatility contribution (see Bandi and Russell (2006, 2011) and the
analysis in Chapter 5). Therefore, when estimating volatility with high-frequency
data, (3.16) is usually computed withm = 72 corresponding to 5-minute returns
over a 6-hour trading period, as indicated in Andersen and Bollerslev (1998). In
fact, at the 5-minute frequency the effects of microstructure noise are negligible. In
our simulation setting we also considerm = 360, corresponding to 1-minute returns,
andm = 720 corresponding to 30-second returns.

The performance of the Fourier method is compared to that of (3.16) withm =
72,360,720 by the statistics

RBIAS = E

[∫ T
0 σ2(s)ds− σ̂2∫ T

0 σ2(s)ds

]
, RRMSE =

√√√√√E

(∫ T
0 σ2(s)ds− σ̂2∫ T

0 σ2(s)ds

)2
,

whereσ̂2 is the estimatêσ2
n,N or RV∆ t , respectively, and

∫ T
0 σ2(s)ds is the integrated

volatility generated in a simulation, whose value is known in the simulation setting.
In each simulation, the Fourier estimatorσ̂2

n,N is built by takingN = n/2. The results
are shown in Fig. 3.1.

First, let us consider the Realized Volatility. The 5-minute estimatorRV5 provides
a downward biased estimate of the integrated volatility (RBIAS> 0) with a RRMSE
larger than the bias. The 1-minuteRV1 is also downward biased with a RRMSE of
the same order of magnitude as the bias in mean. Increasing further the frequency,
the estimatorRV0.5 is characterized by a small variance but a larger bias is observed.
This effect can only be due to the interpolation scheme described above, since no
other form of noise is present, therefore, it can be linked to non-uniform trading.
The Fourier estimator has very small relative bias and relative root mean squared
error due to its specific structure that allows for the use of the original non uniform
observations without preliminary manipulation.

3.2 Feasibility

In order to produce feasible central limit theorems for all the estimators of volatility,
hence feasible confidence intervals, it is necessary to obtain efficient estimators of
the so calledquarticity, which appears as conditional variance in the central limit
results (3.13) and (3.14). Nevertheless, Barndorff-Nielsen et al (2008) remark that
estimating integrated quarticity reasonably efficiently is a tougher problem than es-
timating the integrated volatilitywhen high-frequency data are used, as the effect of
microstructure noise is magnified.

A quite intuitive estimator of quarticity is theRealized Quarticity proposed by
Barndorff-Nielsen and Shephard (2002) and defined as
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Fig. 3.1 Distribution of
∫ T
0 σ2(t)dt−σ̂2∫ T

0 σ2(t)dt
, whereσ̂2 are three different estimators of the integrated

volatility: (a) estimator (3.16) with∆t = 5-minute; (b) estimator (3.16) with∆t = 1-minute; (c)
estimator (3.16) with∆t = 30-second; (d) Fourier estimator. Parameter values:θ = 0.035, ω =
0.6365,λ = 0.2962. The distribution is computed with 1000 “daily” replications.

RQn :=
n

3T

n−1

∑
i=0

(δi(p))4. (3.17)

However, it is consistent only in the absence of noise and sparse sampling is usu-
ally employed to face microstructure noise problems (see also Bandi and Russell
(2011)). Therefore, it is not reliable with high-frequency data. Mykland (2012) pro-
posed an improved estimator of quarticity, based on a local pre-averaging technique,
which generalizes the estimator (3.17). Recently, Andersen et al (2011b) provide an
in-depth look at robust estimation of integrated quarticity based on high-frequency
data, document the empirical challenges posed by data sampling imperfections and
propose a new family of neighborhood truncation estimators, that generalizes ex-
isting nearest neighbor estimators based on the minimum of two adjacent absolute
returns or on the median of three adjacent absolute returns. Functionals of volatility
are also studied in Jacod and Rosenbaum (2013).

In the next paragraph we will see how to estimate quarticity by simply exploiting
the knowledge of the Fourier coefficients of volatility and a basic product formula.
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3.2.1 Fourier Estimator of Quarticity

In the previous sections we have seen that all the Fourier coefficients of the variance
function can be obtained by (3.4); therefore, these estimated coefficients can now be
used as building blocks to estimate different (non-linear) functions of the volatility.
In this section the estimated Fourier coefficients of the volatility will be employed
to compute the integrated fourth power of the volatility function.

First step: estimate the Fourier coefficients of the volatility functionF (σ 2)(k)
by means of (3.4).

Second step: compute thek-th Fourier coefficient of the fourth power of the
volatility, σ4(t), using the product rule of the Fourier series

F (σ4)(k)≈ ∑
s+h=k

F (σ2)(s)F (σ2)(h). (3.18)

Again, the knowledge of all the Fourier coefficients of the function of interest,
σ4(t), allows us to reconstruct the function itself. We focus here on the integrated
fourth power. Considering thek = 0 Fourier coefficient is enough if we are interested
in the integrated quantity, in fact, it holds

2πF (σ4)(0) =
∫ 2π

0
σ4(t)dt.

Starting from (3.18), theFourier estimator of quarticityis defined by

σ̂4
n,N,Q := 2π ∑

|s|<Q

cs(σ2
n,N)c−s(σ2

n,N), (3.19)

where thecs(σ2
n,N) are the estimated Fourier coefficients of the volatility, in their

turn functions of the log-returnsδi(p) (i = 1, . . . ,n) according to (3.3)-(3.4).

Remark 3.2. In order to improve the behavior of the estimator for very high obser-
vation frequencies and in the presence of microstructure noise effects, the sum is
weighted with a Barlett kernel, as follows

σ̂4
n,N,Q := 2π ∑

|s|<Q

(
1− |s|

Q

)
cs(σ2

n,N)c−s(σ2
n,N). (3.20)

Remark 3.3. Notice that whenQ = 1 the Fourier estimator of quarticity is sim-
ply the squared Fourier estimator of integrated volatility. Indeed, recognizing the
considerable imprecision of quarticity estimators, other authors such as Jiang and
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Oomen (2008) opted for simply squaring integrated variance estimators. In this re-
gard, higher order Fourier coefficientscs(σ2

n,N) for s ≥ 1 contribute to increase the
precision of the quarticity estimator with respect to that naive approach.

The estimator (3.19) (equivalently, (3.20)) is consistent in probability, as proved in
Mancino and Sanfelici (2012), where the authors provide a practical way to optimize
the finite sample performance of the Fourier estimator as a function of the number of
frequenciesQ andN, by the minimization of the estimated MSE for a given number
n of intra-day observations.

By means of the Fourier quarticity estimator, it is possible to show evidence of
a feasible version of the Central Limit theorem (3.13). We have repeated the Monte
Carlo experiment of Section 3.1.2 for 5000 daily replications and the histograms
and QQ plots of the normalized error

ρ(n)−1/2 σ̂2
n,N − ∫ 2π

0 σ2(t)dt(
2σ̂4

n,N,Q

)1/2
(3.21)

are plotted in Fig. 3.2. On each trading day (24 hours), 1-minute returns are recorded
and volatility measures are computed according to the choiceN = n/2= 720. The
value of the parametersN and Q for the quarticity estimate in the denominator
of (3.21) are chosen according to the following criterion:N is set approximately
equal ton3/4 and, consequently,M is determined by minimizing the estimate of the
MSE of the quarticity estimator provided by Corollary 3.3 in Mancino and Sanfelici
(2012). This yieldsN = 234 andM = 2. The plots reveal that the normalized error
is approximately normally distributed with mean 0 and standard deviation 1. The
kurtosis and skewness are equal to 3.0623 and -0.1164.
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Fig. 3.2 Distribution ofρ(n)−1/2 σ̂2
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∫ 2π
0 σ2(t)dt

(2σ̂4
n,N,M)

1/2 . Parameter values:θ = 0.035,ω = 0.6365,λ =

0.2962. The distribution is computed with 5000 “daily” replications.
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3.3 Multivariate Estimator

The computation of the covariance of financial asset returns plays a central role for
many issues in finance, both in terms of the theoretical understanding of market
structure and for its relevant applications. Recent papers have shown the potential
of using high-frequency data for the computation of covariances, among others An-
dersen et al (2003), Bollerslev and Zhang (2003), Fleming et al (2003), Bouchaud
and Potters (2003).

There are two crucial points pertaining to practical estimation of covariances.
First, actual transaction data are recorded at random times. Thus, transaction prices
of different assets are usually not observed (or recorded) at the same time. Secondly,
due to such randomness of spacing, a significant portion of the original data sets
should be missing at prespecified grid points. However, most of the covariance es-
timators available in the literature base their statistical properties on uniformity and
synchronization of observation times. Consequently, we must choose the common
sampling interval length first, and impute or interpolate the missing observations in
some way. Then the cleaned data sets are used for the estimation as if they were reg-
ularly and concurrently observed, even if the two original processes may have very
different observation frequencies. This preprocessing of data sets is calledsynchro-
nization. The choice of the sampling interval and of the methods of imputation may
be potential sources of bias, as already highlighted in Section 3.1.2. This may pro-
vide a partial account for theEpps effect (see Epps (1979)): the non-synchronicity of
the arrival times of trades across markets leads to a bias towards zero in correlations
among stocks as the sampling frequency increases.

Following the study in Martens (2004), the different approaches to estimate co-
variances can be split in two groups. The first group uses interpolation of data, in or-
der to obtain synchronous returns. For instance, Dimson (1979), Cohen et al (1983),
Scholes and Williams (1997) modify the Realized Covariance estimator by adding
some leads and lags. A different approach to data synchronization is given by the
refresh timeprocedure proposed by Barndorff-Nielsen et al (2011a) in order to con-
struct the multivariate realized kernels; this synchronization procedure is employed
also by Jacod et al (2009); Christensen et al (2010) who construct an estimator based
on a pre-averaging method. The second group utilizes all transaction data and does
not rely on any synchronization methods (see, e.g., Harris et al (1995), De Jong and
Nijman (1997), Hayashi and Yoshida (2005), Brandt and Diebold (2006)).

The Fourier covariance estimator belongs to the second class, because it uses
all the available observations, being based on the integration of the time series of
returns, as we highlighted in Section 2.2. Therefore, from the practitioner’s point of
view it is easy to implement as it does not rely on any choice of synchronization
methods or sampling schemes.

Assume that the asset prices are described by model (2.1) and integrability con-
ditions analogous to (3.2) hold. Let the trading times be{0= t j

0,n j
< t j

1,n j
< .. . <

t j
kn j ,n j

= 2π}, j = 1, . . . ,d. For simplicity, we assumekn j = n j, for any j, and omit

the second subscript. For anyj = 1, . . . ,d, setρ(n j) := max0≤h≤n j−1 |t j
h+1− t j

h|.
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For any|k| ≤ N andi, j = 1, . . . ,d, the estimator of thek-th Fourier coefficient of
the covarianceΣ i, j is given by (2.12).

The Fourier estimator of integrated covariance between two assets, labeled byi
and j, derives directly from (2.12) by taking the 0-th Fourier coefficient. Therefore,
it is defined as

Σ̂ i, j
ni,n j ,N

:=
(2π)2

2N +1 ∑
|s|≤N

cs(dpi
ni
)c−s(dp j

n j
). (3.22)

By substituting (2.11) into (3.22), the estimator (3.22) can be rewritten as

ni−1

∑
l=0

n j−1

∑
r=0

DN(t
i
l − t j

r )δIi
l
(pi)δ

I j
r
(p j), (3.23)

whereDN(x) is the rescaled Dirichlet kernel (2.8).

3.3.1 Asymptotic Results

In order to simplify the notations, we consider two assets, labeled 1 and 2 and focus
on the off-diagonal terms of the volatility matrixΣ(t).

Suppose that the volatility process pathsσ i
j(t) in (2.1) are continuous, e.g. the

volatilities are driven by a second diffusion process. Letρ(n) := ρ(n 1)∨ρ(n2)→ 0
asn → ∞. The following results hold4.

Consistency. Assume thatNρ(n)→ 0 asN,n → ∞.
(i) Let ck(Σ1,2

n1,n2,N
) be defined by (??), then the following convergence holds in

probability
lim

n,N→∞
ck(Σ

1,2
n1,n2,N

) = F (Σ1,2)(k). (3.24)

(ii) In particular, fork = 0, (i) implies consistency for the Fourier estimator of
integrated covariance given by (3.22). More precisely, it holds in probability

lim
n,N→∞

Σ̂1,2
n1,n2,N

=

∫ 2π

0
Σ1,2(t)dt. (3.25)

Central Limit Theorem. Assume thatNρ(n)→ 0 asN,n → ∞, then the following

stable convergence in law holds:

ρ(n)−
1
2γ

(
Σ̂1,2

n1,n2,N
−
∫ 2π

0
Σ1,2(t)dt

)
→N

(
0,
∫ 2π

0
Σ1,1(t)Σ2,2(t)+ (Σ1,2(t))2 dt

)
(3.26)

whereγ > 1 is such thatNγ = O(n).

4 Asymptotic conditions required for the irregular/asynchronous time grids and detailed proof can
be found in Malliavin and Mancino (2009) Theorem 4.4.
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Remark 3.4. The rate of convergence is slightly sub-optimal, because 1/(2γ)< 1/2.
The optimal rate 1/2 can be obtained assuming thatρ(n)N → c > 0, but in this
case the Fourier estimator of integrated volatility may have a bias dependent on the
data structure, see Theorem 1 in Clement and Gloter (2011) for details. However,
in Section 3.3.2 and in Chapter 5, it will be shown that the most suitable choice
of N to have efficient estimates of the integrated covariance with high-frequency
data is the one considered in (3.26) which allows the Fourier estimator to face two
features of high-frequency data, namely, the asynchronicity of the observations and
the presence of microstructure noise effects.

3.3.2 Asyncronicity Issues

In this section, we deeply analyze the effect of asynchronicity on the Fourier covari-
ance estimator while showing that a suitable choice of the cut-off frequency in the
series expansion can make it negligible.

Some preliminary remarks are in order. When we want to estimate the covariance
of two discretely observed processes using for instance theRealized Covariance
estimator

RC1,2 =
n−1

∑
i=0

δi(p1)δi(p2), (3.27)

data must be preprocessed in order to make them synchronous if not equally
spaced. This can be obtained either by linear interpolation or by piecewise constant
(previous-tick) interpolation over a (uniform) grid, givingp 1, p2 as the interpolated
processes. In particular, the second form of imputation of missing data is reasonable
for it does not produce extraneous bias when estimating quadratic variations of uni-
variate processes, i.e. whenp1 = p2. However, the synchronization process as well
as the choice of the spacing of the interpolation grid is a potential source of bias,
especially when the (regular) interval size is small relative to the frequency of ac-
tual observations. The downward bias of the realized covariance estimator derives
from the fact that each productδi(p1)δi(p2) contributes to the sum if and only if
a new observation occurs for both processes in the interval[t i, ti+1[. Otherwise, at
least one increment is equal to zero and is ignored in the sum. Such occasions of
zero increment will become dominant if the mesh becomes finer. On the other hand,
large mesh spacing leads to inefficient use of data.

Realized Covariance (3.27) with linearly interpolated returns may be less biased,
but this is because of the downward bias in the volatility measurement due to the lin-
ear interpolation illustrated in Section 3.1.2. The spurious positive serial correlation
induced by the linear interpolation technique lowers the volatility estimates. Since
variances are spuriously measured to be lower, correlations turn out to be spuriously
higher, thus compensating in some way the bias due to asynchronicity.

The bias of the Fourier covariance estimator can be easily derived by (3.23) and
takes the form
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E[Σ̂1,2
N,n −

∫ 2π

0
Σ1,2(t)dt] =

n1−1

∑
l=1

n2−1

∑
r=1

(
DN(t

1
l − t2

r )−1
)

E[
∫

I1
l ∩I2

r

Σ1,2(t)dt]. (3.28)

Remark 3.5. For synchronous observations it holdsD N(t1
l −t2

r )=DN(0)= 1 if l = r,
otherwiseI1

l ∩ I2
r = /0, thus implying the right hand side of (3.28) is equal to zero and

the estimator is unbiased. In fact, when data are synchronous, the Fourier estimator
of integrated covariance has the same statistical properties of the univariate volatility
estimator.

In the general asynchronous case, the Fourier covariance estimator turns out to
beasymptotically unbiasedunder the conditionρ(n)N → 0 asn,N → ∞, which im-
plies that(DN(t1

l − t2
r )− 1) in (3.28) converges to 0. Thus, the r.h.s. of (3.28) can

be reduced by tuning the cutting frequencyN with the sampling intervalρ(n). Oth-
erwise, a bias may appear. In contrast, suitably choosing small values ofN allows
one to design rate suboptimal estimators (in the spirit of (3.26)), that are optimal in
MSE terms, thus controlling the combined effects of bias and variance in the finite
sample.

To make this point clearer, we analyze it on simulated data by a Monte Carlo
study. Assume for simplicity thatp1 = p2 = W , whereW is a Brownian motion.
The processp1 is observed at timet1

k = 2πk/n, for k = 0,1, . . . ,n. The processp2

is observed at timet2
k = 2πk/n+π/n, for k = 0,1, . . . ,n−1 and we observep2(0),

p2(2π). We want to estimate the integrated volatility and co-volatility divided by
2π, namely the constant(2π)−1∫ 2π

0 Σ i, j(t)dt = 1. We assumen = 100 andN rang-
ing from 0 ton, although in practice the conditionN ≤ n/2 should be fulfilled in
order to avoid aliasing effects. We consider 10000 replications. Fig. 3.3 shows the
bias and MSE of the Fourier estimators(2π)−1Σ̂1,1

n,N and(2π)−1Σ̂1,2
n,N as a function

of the number of the Fourier coefficients. It is evident that the estimator(2π)−1Σ̂1,1
n,N
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Fig. 3.3 Bias and MSE of the Fourier estimators(2π)−1Σ̂1,1
n,N and(2π)−1Σ̂1,2

n,N as functions of the
number of the Fourier coefficients.
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has no bias regardless of the choice ofN. However, for small values ofN the MSE
increases due to a greater variance of the estimator. The situation is clearly different
for (2π)−1Σ̂1,2

n,N . In this case, asynchronicity yields an increasing bias asN increases.
Obviously, this has effects on the MSE as well. To keep the bias low, we are forced
to choose small values ofN. The best criterion for this choice is the minimization
of the MSE, sinceargminMSE(N) provides the best tradeoff between the different
behavior of bias (that is increasing for largeN) and variance (that is increasing for
small N). Table 3.1 shows a numerical evidence of the Fourier estimator’s behav-

Table 3.1 Comparison of the MSE-optimal Fourier estimator and the Realized Covariance in terms
of bias and variance for the asynchronously observed Brownian motion model.

n = 100 n = 500 n = 1000 n = 5000
OptimalN 25 90 159 492
c = N/n 0.25 0.18 0.16 0.09
γ = logn/ logN 1.43 1.38 1.36 1.37

Variance BIAS Variance BIAS Variance BIAS Variance BIAS
Fourier 3.68e-2 -1.05e-11.04e-2 -5.40e-26.03e-3 -4.25e-21.92e-3 -1.63e-2
n×Variance 3.68 5.20 6.03 9.60
N× Variance 0.92 0.94 0.96 0.94
RC 1.26e-2 -5.05e-12.47e-3 -5.01e-11.23e-3 -5.01e-12.48e-4 -5.00e-1

ior for an increasing number of data when the MSE-optimal cutting frequency is
chosen. The table shows the variance and bias of the Fourier estimator of covari-
ance for the asynchronously observed Brownian motions specified above. The last
line lists the same quantities for the Realized Covariance, in order to emphasize the
different behavior of the two estimators. Our Monte Carlo experiment consists of
10000 replications for increasing number of observationsn = 100,500,1000,5000.
The Fourier estimator is optimized according to the MSE criterion, i.e., the cutting
frequencyN is chosen in order to minimize the MSE for any givenn. The values
of the cutting frequencyN are listed in the table as well. It is evident that the ra-
tio c = N/n between the optimal cut-off frequency and the number of observations
of each process is decreasing asn increases, in line with the conditionρ(n)N → 0
prescribed for the asymptotic result (3.26). In this example, assuming the relation
Nγ = n holds (whereγ appears in the asymptotic result (3.26)), we obtainγ � 1.37.
Thus, the relation between the MSE-based optimalN andn in Table 3.1 seems to
be well represented byN =C n3/4, with C � 0.85. The rate of convergence found in
(3.26) is witnessed by the fact that the quantityn×Variance = Var(

√
n(Σ̂1,2

n,N −1))

is increasing, whileN ×Variance = Var(n1/(2γ)(Σ̂1,2
n,N −1)) is stable asn increases.

The results obtained with the Realized Covariance, after synchronizing observations
by previous-tick interpolation over a uniform grid ofn elements, are totally biased.

Remark 3.6. A bias-correction of the Fourier estimator permits to recover the opti-
mal rate of convergence under the conditionN/n → c > 0. However, this correction
can be explicitly computed only under very special sampling schemes. Therefore, it
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is advisable, when dealing with real data, to use the non corrected (asymptotically
unbiased) estimator with an appropriate cutting frequency.

3.3.3 Comparison Study

A better understanding of the features of the Fourier covariance estimator in the
presence of irregular and asynchronous data, can be obtained through a comparison
with other estimators. In Precup and Iori (2007) two interpolation based methods
(the traditional Pearson coefficient and the Co-volatility weighted method proposed
by Dacorogna et al (2001)) are compared with the Fourier one. The authors show
that the Fourier method outperforms the two others in terms of generating more
accurate estimates, not oversensitive to the choice of returns time scale in any nar-
row range. A different approach is proposed by Oya (2005), who applies the sub-
sampling bias correction method of Zhang et al (2005) to the Fourier estimator of
the univariate integrated volatility and obtains smaller MSE’s than with other bias-
corrected estimators.

Besides the Realized Covariance with different low-frequency sampling, we con-
sider here the following estimator proposed by Hayashi and Yoshida (2005) to cir-
cumvent the drawbacks caused by asynchronicity

AO1,2 =∑
l,r

δI1
l
(p1)δI2

r
(p2) 1{I1

l ∩I2
r �= /0)}, (3.29)

where the product of the price increments contributes to the summation so long as
the corresponding observation intervals are overlapping. We refer to this estimator as
theAll-overlapping (returns) estimator, as suggested by Corsi and Audrino (2010).
In Hoshikawa et al (2008) a purely empirical comparison between Realized Covari-
ance, the All-overlapping estimator and the Fourier method is performed under no
market microstructure noise. Nevertheless, the analysis is conducted by letting the
frequencyN go to infinity without establishing any criterion for the optimal choice
of N. The following study corrects this point.

We simulate discrete data from the continuous time bivariate GARCH model[
dp1(t)
dp2(t)

]
=

[
β1σ2

1(t)
β2σ2

4(t)

]
dt +

[
σ1(t) σ2(t)
σ3(t) σ4(t)

][
dW5(t)
dW6(t)

]
(3.30)

dσ2
i (t) = (ωi −θiσ2

i (t))dt +αiσ2
i (t)dWi(t), i = 1, . . . ,4,

where{Wi(t)}6
i=1 are independent Wiener processes. The parameters of the model

are:α1 =0.1α2 =0.1,α3 = 0.2,α4 = 0.2,β1= 0.02,β2= 0.01,ω1 = 0.1,ω2= 0.1,
ω3 = 0.2, ω4 = 0.2, θ1 = 0.1, θ2 = 0.1, θ3 = 0.1, θ4 = 0.1. The initial values for
prices and volatilities arep1(0) = log100,p2(0) = log90,σ1(0) = 0.9604,σ2(0) =
0.5616,σ3(0) = 1.2171,σ4(0) = 1.3.
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Table 3.2 Comparison of integrated volatility estimators:ρ1 = 5 sec,ρ2 = 10 sec with a displace-
ment of 3 seconds for Reg-NS trading (δ = 2/3); λ1 = 5 andλ2 = 10 for Poisson trading scheme.

Reg-NS Poisson
MSE bias MSE bias

Σ̂12
N,n1,n2

2.39e-3 -1.54e-2 3.65e-3 -3.88e-2
RC12

0.5min 2.78e-2 -1.61e-1 3.13e-2 -1.71e-1
RC12

1min 9.29e-3 -8.32e-2 1.01e-2 -8.87e-2
RC12

5min 1.31e-2 -1.66e-2 1.25e-2 -2.33e-2
AO12 5.91e-4 -2.74e-3 1.07e-3 1.34e-3

We generate (through simple Euler Monte Carlo discretization) high-frequency
evenly sampled returns by simulating second-by-second return and variance paths
over a daily trading period ofh = 6 hours, for a total of 21600 observations per
day. Then we sample the observations according to two different trading scenarios:
regular non-synchronous trading (Reg-NS) with durationρ1 between trades for the
first asset andρ2 = 2ρ1 for the second and displacementδ ·ρ1 between the two, i.e.
the second asset starts tradingδ ·ρ1 seconds later but no trade of asset 1 occurs at
the same time of a trade of asset 2; specifically, the link between the trading times of
the two assets is the following:t2

j = t1
2( j−1)+1+δ π

n1−1 for j = 1, . . . ,n2. Moreover,

we assumet1
1 = 0, t1

n1
= 2π andn2 = n1/2. The second trading scenario isPois-

son trading, where durations between observations are drawn from an exponential
distribution with meansλ1 andλ2 for the two assets respectively.

In implementing the Fourier estimator̂Σ12
N,n1,n2

, the smallest wavelength that can
be evaluated in order to avoid aliasing effects is twice the smallest distance be-
tween two consecutive prices, which under uniform sampling yieldsN ≤ min((n 1−
1)/2,(n2−1)/2) (Nyquist frequency). Nevertheless, as already pointed out, smaller
values ofN may provide better variance/covariance measures. Specifically, we

chooseN � 0.85 min(n3/4
1 ,n3/4

2 ).
The Fourier covariance estimator is compared to the Realized covarianceRC 12

0.5min
(resp.RC12

1min andRC12
5min) based on half a minute (resp. 1 minute and 5 minutes) re-

turns and the All-overlapping estimatorAO12. The low frequency returns necessary
for the Realized covariance-type estimators are obtained by imputation on a uniform
grid. The Fourier and All-overlapping estimators use all tick-by-tick data.

The results are reported in Table 3.2. Within each table, entries are the values of
the MSE and bias, using 500 Monte Carlo replications. When we consider covari-
ance estimates, an important effect to deal with is the Epps effect. In fact, from Table
3.2 we see that in the Reg-NS setting the effects imputable to non-synchronicity are
evident and spoil all the Realized covariance-type estimates based on synchroniza-
tion. The best performance is given by the AO estimator, immediately followed by
the Fourier estimator. Similar considerations hold for the Poisson trading scheme.
The AO estimator still ranks first, immediately followed by the Fourier estimator.
However, in the latter case the difference between the AO and Fourier estimator in
terms of MSE is strongly reduced although the Fourier estimator is more biased.
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In conclusion, the Fourier covariance estimator is rather efficient when consid-
ering a pure diffusive model, in particular when realistic (i.e. non regular) asyn-
chronous trading times are considered. In Chapter 5 we will see the advantages
given by a suitable implementation of the Fourier technique when the observed pro-
cesses are affected by microstructure noise.

3.3.4 Positive Definiteness

From a practical point of view, the choice of which estimators to use should not be
only based on the rate of convergence to their asymptotic distributions, which is not
necessarily a reliable guide to finite sample performance. In fact, this approach to
the comparison of covariance estimators does not have an economic basis and treats
overestimates and underestimates of volatility of the same magnitude as equally
important. Recent works in the direction of focusing on comparisons which specifi-
cally use economic criteria, like forecasting properties, are Andersen et al (2011a),
Ghysels and Sinko (2011), or in an asset-allocation context Fleming et al (2001),
Engle and Colacito (2006), Bandi et al (2008), De Pooter et al (2008) and Mancino
and Sanfelici (2011a). These authors study the economic impact of volatility timing
versus unconditional mean-variance efficient static asset allocation strategies and of
selecting the appropriate sampling frequency or choosing between different bias and
variance reduction techniques for the Realized covariance matrices.

To this end the fact that the estimated covariance matrix preserves its positive
semi-definiteness is a primary issue. The estimated covariance matrix using Fourier
methodology, when the Fejer kernel is used, has this important property. In particu-
lar, the following version of Fourier estimator of integrated volatility matrix (named
Fourier-Fejer estimator)

1
N +1

ni−1

∑
l=0

n j−1

∑
r=0

FN(t
i
l − t j

r )δIi
l
(pi)δ

I j
r
(p j), i, j = 1, . . . ,d, (3.31)

whereFN(x) is the Fejer kernel defined in (3.10), is positive semi-definite.

Remark 3.7. When positive definiteness of the covariance matrix is required, the
choice of the optimal cutting frequencies for the various volatility measures can-
not be obtained independently for each entry. However, although the positivity of
the covariance matrix is ensured only when the sameN is used for all the entries,
numerical experiments show that the use of different optimal cutting frequenciesN
for variances and covariances does not spoil the positive definiteness property of the
estimator (see Mancino and Sanfelici (2011b)).

Remark 3.8. The Fourier estimator of instantaneous volatility introduced in (2.10)
may not preserve positive definiteness, due to the lack of symmetry in the definition.
Akahori et al (2016) proposed a modified Fourier estimator in order to overcome this
problem.





Chapter 4
Estimation of Instantaneous Volatility

Unlike the integrated volatility, the non-parametric estimation of instantaneous
volatility is a relatively recent topic. In the case of deterministic volatility function,
Genon-Catalot et al (1992) proposed a first approach through wavelet series, while
Florens-Zmirou (1993) developed functional methods, which are local in space, for
estimating the volatility as function of the underlying state variable level. Under the
stochastic volatility paradigm, Foster and Nelson (1996) first proposed a local esti-
mator of spot volatility, from which many refinements have been derived in the sub-
sequent literature. It consists in using a double asymptotics in order to perform both
the numerical derivative involved in formula (2.16) and the discretization procedure
contained in (2.14). In this scenario, Malliavin and Mancino (2002a,b) suggested to
compute the instantaneous multivariate volatility function through its expansion in
trigonometric polynomials, whose coefficients depend on the log-return processes.
Other contributions to this field are given, among others, by Comte and Renault
(1998), Andreou and Ghysels (2002), Fan and Wang (2008), Mykland and Zhang
(2008), Ogawa and Sanfelici (2011), Todorov and Tauchen (2012), Alvarez et al
(2011), Zu and Boswijk (2014).

In this chapter, the Fourier estimator of instantaneous multivariate volatility is de-
fined for discrete, unevenly spaced and asynchronously sampled asset prices. Both
the asymptotic and the finite sample properties of the estimator are studied. Finally,
directions are provided to efficiently implement the estimator with real market data.

4.1 Univariate Estimator

Consider the asset price model (3.1) and notations from Section 3.1. Recalling that
anyk-th Fourier coefficient of the volatility process can be consistently estimated by
(3.4) and using the Fourier-Fejer inversion formula, we define theFourier estimator
of spot volatilityfor anyt ∈ (0,2π), as follows

31
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σ̂2
n,N,M(t) := ∑

|k|≤M

(
1− |k|

M

)
eitkck(σ2

n,N). (4.1)

We point out that the definition of the estimator (4.1) depends on three parameters,
the number of datan and the twocutting frequenciesN,M. The choice of the rel-
ative growth rate of them is a relevant issue and will be discussed in the following
sections.

By elementary calculus, the estimated Fourier coefficients (3.4) can be written as

ck(σ2
n,N) =

1
2π

n−1

∑
j=0

n−1

∑
j′=0

e−i k t j DN(t j′ − t j)δj(p)δj′(p),

whereDN is the rescaled Dirichlet kernel defined by (2.8). Thus, the Fourier esti-
mator of spot volatility (4.1) can be expressed as follows

σ̂2
n,N,M(t) =

1
2π

n−1

∑
j=0

n−1

∑
j′=0

FM(t − t j′)DN(t j′ − t j)δj(p)δj′(p), (4.2)

whereFM is the Fejer kernel defined by (3.10). We stress the point that the estimator
(4.2) contains two terms: the quadratic part

1
2π

n−1

∑
j=0

FM(t − t j)(δj(p))2 (4.3)

and the cross terms

1
2π

n−1

∑
j=0

n−1

∑
j′=0
j′ �= j

FM(t − t j′)DN(t j′ − t j)δj(p)δj′(p). (4.4)

The quadratic term (4.3) behaves like the Kernel-based spot volatility estimators
considered in Fan and Wang (2008), Kristensen (2010). Nevertheless, by choosing a
suitable cutting frequencyN, the second addend (4.4) plays a crucial role in making
the estimator robust to microstructure noise effects. The role of the cross terms for
filtering microstructure effects has also been pointed out in the case of the Realised
kernel estimators of integrated variance proposed in Barndorff-Nielsen et al (2008).
This point will be addressed in Chapter 5.

4.1.1 Asymptotic Results

The consistency of the spot volatility estimator (4.1) results from the preliminary
proof of the convergence in probability of (3.4) to thek-th Fourier coefficient of the
volatility stated by (3.11), for anyk. Then, if the volatility path is continuous, the
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functionσ 2(t) can be determined in the sup-norm once we know (a finite number
of) its Fourier coefficients. In fact, the Fourier coefficients represent the building
blocks used to obtain all information about the latent variable, thevolatility.

Consistency. Let σ̂2
n,N,M(t) be defined in (4.1). The following uniform convergence

in probability holds (see Malliavin and Mancino (2009) for the proof)

lim
n,N,M→∞

sup
t∈(0,2π)

|σ̂2
n,N,M(t)−σ2(t)|= 0. (4.5)

The uniform convergence (4.5) highlights the fact that the Fourier estimator is
a global estimator, as well as the wavelet-based estimator proposed by Hoffmann
(1999), in the sense that it performs well in estimating the whole patht → σ 2(t), in
the interval of interest(0,2π). In this respect, a relevant open problem consists in
determining the rate of convergence in (4.5).

Actually, the Fourier spot volatility estimator works also as a pointwise estimator
inside the time interval, but it loses its accuracy near the boundaries. In Section
4.1.2 we illustrate these properties. In order to avoid the artificial “periodization”
subjacent to Fourier series methodology, which is responsible of the low precision
of the estimation near the boundary of the time interval, Curato et al (2014) propose
an estimator based on the Laplace transform, which is statistically efficient both
inside the interval of observations and near the boundary.

Central Limit Result. Under the conditionsN/n → c with c = 1/2 asN,n → ∞
andM/n → 0 asM,n → ∞, the following stable convergence in law1 holds√

n
M

(
σ̂2

n,N,M(t)−σ2(t)
)→ N

(
0,

4
3

σ4(t)

)
. (4.6)

Note thatN = n/2 is the well knownNyquist frequencyand it provides the op-
timal2 asymptotic variance43σ4(t), see also the discussion in Cuchiero and Teich-
mann (2015). Different choices ofc are discussed in Mancino and Recchioni (2015),
where the central limit theorem is proved. However, in Chapter 5 we will see that
the possibility of choosing the cutting frequencyN growing at a lower rate thann
(i.e.,N/n → 0) is an important feature of the Fourier estimator, when dealing with
high-frequency data in the empirical applications. In fact, by cutting the highest fre-
quencies, the Fourier estimator uses as much as possible of the sample path without
being much sensitive to market frictions.

With respect to the localizing frequencyM, the convergence (4.6) precisely re-
quiresM = O(nβ) with (2ν + 1)−1 < β < 1, whereν ∈ (0,1/2) is the Hölder-
continuity parameter of the volatility pathσ(t). Thus, forβ close to 1/2 the rate
of convergence becomes 1/4, which is the optimal rate of convergence for a non-
parametric spot volatility estimator. Note that the H¨older-continuity assumption is

1 For an introduction of the concept of stable convergence in law see e.g. Aldous and Eagleson
(1978) and Jacod and Shiryaev (2003)
2 The localized realized volatility estimators has variance equal to 2σ4(t).
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not restrictive. For instance, it holds if the volatility processσ is driven by a sec-
ond Brownian semi-martingale with bounded coefficients, as it is for well known
stochastic volatility models. This result essentially follows by using Kolmogorov
theorem?? (see Fisher and Nappo (2010) for a study of the modulus of continu-
ity of a stochastic process with possibly unbounded coefficients and Fan and Wang
(2008) for a proof of the H¨older continuity in the case of many common volatility
models).

4.1.2 Finite Sample Properties

When volatility estimates are needed for empirical purposes, the main concern re-
lies on the finite sample properties of the estimator, as suggested in Griffin and
Oomen (2011). Thus, in this section some finite sample properties of the Fourier
spot volatility estimator are presented to the reader.

Firstly, we show numerical evidence of the accuracy of the Fourier spot volatility
estimator in approximating the volatility path. This is done by comparing the true
(simulated) volatility path with the estimated one at different times by means of the
respective standardized returns defined by

z(t) :=
r(t)

σ(t)
√

∆ t
, (4.7)

wherer(t) := p(t +∆ t)− p(t) is the log-return. The standardized returns (4.7) are
frequently used to study the performance of volatility estimators, because, for anyt,
the standardized returns are random variables normally distributed with zero mean
and variance equal to one for small sampling intervals∆ t (e.g., see Andersen et al
(2001b), Zu and Boswijk (2014)).

The proposed analysis is carried out using the following stochastic volatility
model

dp(t) = µ dt +σ(t)dW1(t), (4.8)

σ(t) = exp(β0+β1τ (t)), (4.9)

dτ (t) = β2τ (t)dt + dW2(t), (4.10)

whereW1(t) andW2(t), t ∈ [0,T ], are dependent Brownian motions with correla-
tion λ . The model parameters are:µ = 0.03,β1 = 0.125,β2 = −0.025,λ = −0.3,
β0 = β1/(2β2). The random variableτ0 has distributionN (0,−1/(2β2)), while
the initial log-price isp0 = log 9. We generate second-by-second return and vari-
ance paths for a total ofn = 21600 observations per day. The simulation is carried
out using the explicit Euler discretization scheme and the time horizon isT = 1 day.
The log-pricep is not contaminated by microstructure noise effects, which will be
considered in Chapter 5.
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The standardized returns (4.7) are evaluated on the regular time gridt j = 0.5(2 j−
1)∆ t, j = 1,2, ...,�T/∆ t�, where� ·� denotes the integer part operator3, using both
the true volatility and the volatility estimated by the Fourier method. We denote the
true and estimated standardized returns withz(t) andẑN,M(t), respectively. The cut-
ting frequencyN has been selected equal ton/2 according to the analysis in Chap-
ter 3 andM equal to 1

2π
1
8

√
n logn in order to fulfill the assumptions required for

the asymptotic Normality (4.6) and the numerical study in Mancino and Recchioni
(2015).
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Fig. 4.1 Comparison between the cumulative density functions of a standard normal sample (red
solid line), of the standardized returns using the true volatility (green dotted line) and using the
Fourier spot volatility estimates (blue dash-dot line) when∆ t = 1 minute (a),∆ t = 5 seconds (b).

Fig. 4.1 shows a comparison between the cumulative density functions of the two
samples{z(t j)} j=1,...,T/∆ t , {ẑN,M(t j)} j=1,...,T/∆ t and the theoreticalN (0,1), when
∆ t = 1 minute (Fig. 4.1 (a)) and∆ t = 5 seconds (Fig. 4.1 (b)). Fig. 4.1 shows that
the theoretical cumulative density function is approximated with sufficient accu-
racy when∆ t = 1 minute. Moreover, the quality of the approximation substantially
improves when∆ t = 5 seconds, where the cumulative density function ofẑ N,M per-
fectly fits the probability distributionN (0,1).

It is worth noting that the volatility estimates used inẑN,M have been computed
using only one log-price path sampled at 1-second (i.e.,n=21600) and choosing the
same cutting frequenciesN andM for anyt. This fact highlights theglobalcharacter
of the Fourier estimator, namely, the fact that it is designed to estimate the volatility
path as a process over the entire time interval. Confirming this point, Fig. 4.2 shows
a realization of the true spot variance (dotted line) and the corresponding Fourier
estimates (solid line) obtained with the same choice ofN andM as in Fig. 4.1 and
recording the volatility path at the scale∆ t = 1 minute. A comparative study of
the performance over the entire interval of the Fourier spot volatility estimator with
different local estimators is presented in Mancino and Recchioni (2015).

Fig. 4.1 and 4.2 are obtained using a single realization of the log-price process.
In order to investigate whether the good fitting does not depend on the specific path,

3 For the sake of simplicity, hereafter we omit the integer part symbol� ·�.
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Fig. 4.2 True varianceσ2(t) (dotted line) and Fourier estimated varianceσ̂2
n,N,M(t) (solid line) as

a function of time, recorded at a 1 minute scale for one realization of (4.8)-(4.10).

we proceed generating 500 replications of the standardized return pathsz(t) and
ẑN,M(t), for four different values of the scale at which the volatility is reconstructed,
that is∆ t = 5, 30 seconds, 1, 3 minutes. We apply the Kolmogorov-Smirnov (KS)
and the Jarque-Bera (JB) tests at the 5% significance level to determine whether the
500 random samples could have the hypothesized standard normal (KS-test) or a
normal (JB-test) cumulative density function with unspecified mean and variance.
The two tests are employed since it is known that the standardized returns may fail
to be standard normal random variables when the scale∆ t increases up to 3 minutes.
The upper panel in Table 4.1 shows the scale∆ t, the percentage of the KS test re-

Table 4.1 Comparison of the true standardized returnsz(t) and the Fourier estimated standardized
returnŝzN,M(t) using Kolmogorov-Smirnov and Jarque-Bera tests.

True standardized returnsz(t)
∆ t KS rejections (%) KS-pvalue JB rejections (%) JB-pvalue

5 secs 7.4% 0.48 4.0% 0.49

30 secs 7.8% 0.45 4.4% 0.51

60 secs 8.8% 0.46 4.6% 0.52

180 secs 8.2% 0.45 4.2% 0.53

Estimated standardized returnsẑN,M(t)
∆ t KS rejections (%) KS-pvalue JB rejections (%) JB-pvalue

5 secs 7.4% 0.49 3.8% 0.49

30 secs 7.8% 0.45 3.8% 0.51

60 secs 9.0% 0.45 4.0% 0.52

180 secs 7.6% 0.46 4.0% 0.52

jections, the corresponding average p-values, the percentage of the JB test rejections
and the corresponding average p-values obtained using the true standardized returns
z(t), while the lower panel shows the same quantities for the estimated standard-
ized returnŝzN,M(t). The analogous behaviour of the standardized returns using the
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true and estimated volatility for the four scales indicates that the volatility estimates
obtained by the Fourier estimator match the true ones. The percentages of rejec-
tion obtained for the KS test are slightly larger than those obtained for the JB test.
This result is due to the non-negligible role played by the drift when∆ t is greater
than 1 minute. We emphasize that a satisfactory approximation of the standardized
returns is significant for an accurate volatility estimate, since the evaluation of the
standardized return (4.7) at timet is based on the volatility evaluation at the same
time t.

Finally, we study the empirical distribution of
√

n/M(σ̂2
n,N,M(t)−σ2(t))/σ2(t)

for the 500 replications of tick-by-tick data. Fig. 4.3 shows the empirical and theo-

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Empirical Distribution Fourier − Variance 4/3  − c=1/2

H= 0

pvalue= 0.52417

time= 0.09

(a) −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Empirical Distribution Fourier − Variance 4/3  − c=1/2

H= 0

pvalue= 0.83144

time= 0.5

(b) −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pd
f

Empirical Distribution Fourier − Variance 4/3  − c=1/2

H= 0

pvalue= 0.77046

time= 0.94

(c)

Fig. 4.3 Empirical distribution of
√

n/M(σ̂2
n,N,M(t)−σ2(t))/σ2(t) at t = 0.09 (a), t = 0.5 (b),

t = 0.94 (c), withN = n/2 andM = 1
2π

1
8

√
n logn.

retical distributionN (0,4/3) at timet = 0.09 (panel (a)),t = 0.5 (panel (b)) and
t = 0.94 (panel (c)). The empirical distributions shown in each panel are tested for
normality using the Jarque-Bera test at the 5% significance level. The test shows the
null hypothesis is not rejected. The p-values are shown in the panels of Fig. 4.3.

4.2 Multivariate Estimator

Along the same lines as in Section 4.1, we define the Fourier estimator of instanta-
neous multivariate volatility. Specifically, we are interested in estimating the process
Σ(t) in (2.2) as astochastic function of timefor anyt in [0,2π]. Notations from Sec-
tion 3.3 are in force.

The building blocks, namely the estimators of all the Fourier coefficients of the
volatility matrix’s entries, are given by (??). Therefore, we can define the random
function

Σ̂ i, j
ni,n j ,N,M(t) := ∑

|k|≤M

(
1− |k|

M

)
ck(Σ

i, j
ni,n j ,N

)eikt (4.11)

which is called theFourier estimatorof the multivariate spot volatilityΣ i, j(t).
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4.2.1 Asymptotic Results

Confirming the fact that Fourier estimator is essentially defined to deal with the mul-
tivariate case, the asymptotic results for the Fourier estimator (4.11) follow along
the same line as the univariate case. However, the (possible) asyncronicity between
recorded data introduces new issues, which can be addressed with a suitable choice
of the cutting frequenciesN,M.

In order to simplify the notations, we consider two assets, labeled 1 and 2 and
we focus on the covariance terms of the volatility matrixΣ(t). Let ρ(n) := ρ(n 1)∨
ρ(n2)→ 0 asn → ∞.

Suppose that the volatility processesσ i
j(t) in (2.1) are continuous, e.g., the

volatilities are driven by a second diffusion process. Asymptotic conditions re-
quired for the irregular/asynchronous time grids are stated in Malliavin and Mancino
(2009) Theorem 4.4.

Consistency. Recall thatck(Σ1,2
n,N) defined in (??) converges to the Fourier coeffi-

cient of the cross-volatility functionF (Σ 1,2)(k) in virtue of (3.24). LetΣ̂1,2
n,N,M(t)

be defined by (4.11) and suppose thatNρ(n) → 0 andM/N → 0, asN,M,n → ∞,
then the following uniform convergence holds in probability

lim
n,N,M→∞

sup
t∈(0,2π)

|Σ̂1,2
n,N,M(t)−Σ1,2(t)|= 0. (4.12)

The assumptionNρ(n) → 0 is required for the consistency of the estimator with
asynchronous data. On the other hand, in the case when observed data of the two
assets are synchronous, the best choice isN = n/2, see Mancino and Recchioni
(2015). The situation is different if data are contaminated by microstructure noise:
when dealing with noisy high-frequency data, the choice ofN being an infinite of
lower growth rate than the number of datan is recommended, see also the discussion
in Section 3.3.2.

Central Limit Result. Regarding the central limit result for the multivariate spot
volatility Fourier estimator, some partial results are known. The pointwise asymp-
totic normality in the multivariate synchronous setting holds given the assumptions
already considered in Section 4.1.1, see also Mancino and Recchioni (2015) and
the discussion in Section 4.2.2. The weak convergence is obtained in Malliavin
and Mancino (2009) for asynchronous data when some rather technical conditions
are satisfied. In Mancini et al (2015) the authors consider the quadratic part of the
Fourier estimator, thus reducing it to a kernel-based estimator in the spirit of Kris-
tensen (2010), and prove the optimal rate (pointwise) asymptotic normality for this.
However, as we will see in Section 5.4, such a modification of the Fourier estimator
while allowing one to get this mathematical result, destroys its efficiency in practical
relevant cases, such as in the presence of high-frequency data.
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4.2.2 Bandwidth and Scale Selection

This section studies the finite sample efficiency of the Fourier estimator of the spot
volatility matrix. Being a rather unexplored field, we obtain here some preliminary
original results, with the primary goal to give some directions for an efficient imple-
mentation of the estimator.

We simulate the following continuous time bivariate GARCH model:[
dp1(t)
dp2(t)

]
=

[
β1σ2

1(t)
β2σ2

4(t)

]
dt +

[
σ1(t) σ2(t)
σ3(t) σ4(t)

][
dW5(t)
dW6(t)

]
(4.13)

dσ2
i (t) = (ωi −θiσ2

i (t))dt +αiσ2
i (t)dWi(t), i = 1, . . . ,4,

where{Wi(t)}, i = 1,2, . . . ,6 are independent Brownian motions. The parameters of
the model are:α1 = 0.1 α2 = 0.1, α3 = 0.2, α4 = 0.2, β1 = 0.02,β2 = 0.01,ω1 =
0.1, ω2 = 0.1, ω3 = 0.2, ω4 = 0.2, θ1 = 0.1, θ2 = 0.1, θ3 = 0.1, θ4 = 0.1, α = 0.1;
further,σ1(0) = 0.5, σ2(0) = 0.1, σ3(0) = 0.9, σ4(0) = 0.25 andp1(0) = log 9,
p2(0) = log11.

Firstly, we show empirical evidence that

the performance of the Fourier estimator in the multivariatesynchronouscase
is the same as in the univariate one, when the cutting frequencyN andM are
chosen as suggested in Section 4.1.2, that isN = n/2 andM = 1

2π
1
8

√
n logn.

To this end, we simulate synchronous evenly spaced 1-second returns,p 1(tl),
p2(tl), tl = l T/n, l = 0,1, . . . ,n, T = 1 day (6 hours),n = 21600, using the explicit
Euler discretization scheme. We compute the true volatility matrix entriesΣ i, j(t)
and their Fourier estimates,̂Σ i, j

n,N,M(t) as a function of time, running 500 daily repli-
cations of the 1-second log-returns.

In this synchronous setting, we investigate the empirical distributions of the true
volatility matrix and its Fourier estimate by comparing the distribution of the 500
realizations ofΣ i, j(t) and ofΣ̂ i, j

n,N,M(t) at timest = 0.05+0.1k, with k = 0,1, . . . ,9
andt = 0.99. The analysis is carried out using the Kolmogorov-Smirnov (KS) test
to determine whether the two random samples are drawn from the same underlying
continuous population. We set the significance level equal to 5%. In Table 4.2 we
show the timet considered, the result of the hypothesis test,H, (i.e.H = 0 the null
hypothesis is not rejected at 5% level,H = 1 the null hypothesis is rejected at 5%
level) and the correspondingp-value for the cross-volatilityΣ 1,2(t) and the volatil-
ities Σ1,1(t), Σ2,2(t). Table 4.2 shows that the performance of the Fourier estimator
is excellent inside the time interval. Furthermore, thep-values for the estimated
volatility Σ̂ i, j

n,N,M(t) (i, j = 1,2) are similar, indicating that the cross-volatility esti-
mation does not require a specific treatment in the synchronous case.

Consider now the empirically more relevant case ofasynchronousdata. The ana-
lyzed example consists of two asynchronous samples with the same number of data
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Table 4.2 Synchronous data. Comparison between the true spot volatilitiesΣi, j(t) under model
(4.13) and the estimated onesΣ̂ i, j

n,N,M(t), using the two-sample K-S goodness-of-fit hypothesis test.

Σ1,1(t)
t H KS-pvalue

0.05 1 0.0000121
0.15 1 0.1931
0.25 0 0.0691
0.35 0 0.5560
0.45 0 0.5660

0.55 0 0.4431

0.65 0 0.8937

0.75 0 0.9921

0.85 0 0.04431

0.95 0 0.0993

0.99 1 0.0009

Σ1,2(t)
t H KS-pvalue

0.05 1 0.0006
0.15 0 0.3438
0.25 0 0.5361
0.35 0 0.9611
0.45 0 0.5560

0.55 0 0.7942

0.65 0 0.9921

0.75 0 0.9921

0.85 0 0.4431

0.95 0 0.6766

0.99 1 0.0004

Σ2,2(t)
t H KS-pvalue

0.05 1 0.0471
0.15 0 0.4431
0.25 0 0.8937
0.35 0 0.6766
0.45 0 0.5560

0.55 0 0.9921

0.65 0 0.9921

0.75 0 0.9999

0.85 0 0.8937

0.95 0 0.9610

0.99 1 0.0082

(i.e.,n1 = n2 = n = 21600). The processp1 is observed att1
k , k = 1,2, . . . ,n, where

t1
k are evenly spaced, whilep2 is observed att2

k , k = 1, . . . ,n, wheret1
0 = t2

0 andt2
k

is drawn out from a uniformly distributed random sample in the interval[t 1
k−1, t

1
k ],

k = 1,2, . . . ,n.
We compute the average relative errors of the Fourier estimatesΣ̂ i, j

n,N,M(t) on the
grid τν = (ν +1/2)/360,ν = 0,1, . . . ,359, that is at a 1 minute scale, as follows

ei, j(τν ) =
1

500

500

∑
l=1

|Σ i, j
l (τν )− Σ̂ i, j

n,N,M,l(τν )|
|Σ i, j

l (τν )|
, ν = 0,1, . . . ,359, (4.14)

where the subscriptl refers to thel-th realization out of 500 in the Monte Carlo
experiment. Fig. 4.4 (a) - (b) shows the average relative errorse 1,1(t) (solid line),
e1,2(t) (dotted-line) ande2,2(t) (dashed line) as a function of timet ∈ (0,1). In panel
(a) the Fourier estimates are computed by choosingN andM as in the synchronous
case; we note that the relative error sensibly increases for the estimates of the cross-
volatilities. Panel (b) shows the same relative errors ofΣ 1,1(t) andΣ2,2(t) as those
in panel (a), while the relative errors of the instantaneous cross-volatilityΣ 1,2(t) are
obtained using the estimateŝΣ1,2

n,N,M(t) corresponding to the cutting frequenciesN =

0.85n3/4, andM = 1
2π

1
8

√
n3/4 logn3/4. This result confirms the two main findings

illustrated in the case of the integrated volatility matrix and resumed in the following
box.

First, the choiceN = n/2 is not the proper one when asynchronous data are
processed, while it is very efficient for synchronous data. Second, the Fourier



4.2 Multivariate Estimator 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

Relative       
Error      

Relative error of Σ1,1

Relative error of Σ1,2

Relative error of Σ2,2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

time

Relative       
Error      

Relative error of Σ1,1

Relative error of Σ1,2

Relative error of Σ2,2

(b)

Fig. 4.4 Asynchronous data. Average relative errors of the Fourier estimatesΣ̂1,1
n,N,M(t), Σ̂1,2

n,N,M(t)

andΣ̂2,2
n,N,M(t) as a function of time. Panel (a):n1 = n2 = n, N = n

2, M = 1
2π

1
8

√
n logn. Panel (b):

n1 = n2 = n andN = 0.85 n3/4, M = 1
2π

1
8

√
n3/4 logn3/4 for the instantaneous covariance. Note

that they-scale in panel (a) is larger than in panel (b) due to the large values of the relative errors.

methodology provides efficient estimates of the cross-volatility by suitably
cutting the frequenciesN andM.

Remark 4.1. It would be possible to further improve the accuracy of the Fourier
estimates by choosingM depending on the timet, as it is usually done for the local
volatility estimators (see Mancino and Recchioni (2015) for further details).

The last simulation exercise analyses the point-wise accuracy of the volatility
matrix estimation over the entire time interval, with the aim of showing that

the Fourier method providesglobalestimation of the spot volatility, that is the
volatilities are estimated with similar accuracy at anyt in the interior of the
domain by choosing the cutting frequenciesN andM uniformly in time.
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Fig. 4.5 displays the true values of the volatility matrixΣ i, j(t) (dotted line) and
the estimated oneŝΣ i, j

n,N,M(t) at a scale of 1 minute in the synchronous case4. The
estimated values are obtained using one realization of the 1-second returns (i.e.
n = 21600), while choosingN = n/2 andM = 1

2π
1
8

√
n logn. Notice that the re-

construction is quite satisfactory in all the cases.
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Fig. 4.5 Synchronous data. The upper panel showsΣ1,1(t) (dotted line) and the Fourier estimates
(solid line), the middle panel showsΣ1,2(t) (dotted line) and the Fourier estimates (solid line), and
the lower panel showsΣ2,2(t) (dotted line) and the Fourier estimates (solid line) as a function of
time. The estimated spot volatility matrix is reconstructed at a time scale of 1 minute from one
realization of the 1-second log-returns (n = 21600,N = n

2, M = 1
2π

1
8

√
n logn).

Fig. 4.6 (upper panel) displays the true values of the cross volatilityΣ 1,2(t) (dot-
ted line) and the estimated onêΣ1,2

n,N,M(t), in the non-synchronous case at a scale
of 1 minute. The estimated values of the instantaneous covariance are obtained us-
ing one realization of the 1-second returns (i.e.n = 21600) withN = 0.85n 3/4 and
M = 1

2π
1
8

√
n3/4 logn3/4. As already noticed above (cfr. Fig. 4.4 (b)), this choice

makes the estimates of the instantaneous cross volatility of quality comparable with
those of the instantaneous volatilities. The estimated cross volatilityΣ̂1,2

n,N,M(t) in the
asynchronous case turns out to be a very smooth function. This is a consequence of
the fact that the cutting frequencyN andM have been reduced in order to eliminate
the bias caused by the asynchronous data. Nevertheless, despite the smoothness,
the estimated̂Σ1,2

n,N,M is able to capture the major oscillations of the true simulated

cross volatilityΣ1,2. As a benchmark, in the lower panel of Fig. 4.6 we show the
performance of the spot Realized Covariance estimator, obtained by localizing the
estimator (3.27). The localizing bandwidth must be carefully chosen in order to
reduce oscillations and minimize the discretization errors due to last tick interpola-
tion. Due to the particular asynchronicity structure at hands, here the bandwidth is
7 minute large. It is evident that the Fourier estimates are much smoother and hence
reliable than the ones obtained by the Realized Covariance.

4 Here the volatility is estimated at the same scale used to evaluate the average relative errorsei, j

(i, j = 1,2) defined in (4.14).
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Fig. 4.6 Asynchronous data. True (dotted line) and estimated (solid line) cross volatilityΣ1,2(t)
as a function of time obtained by the Fourier estimator (upper panel) and by the Realized Covari-
ance (lower panel). The estimated cross volatility is reconstructed at a scale of 1 minute from one
realization of the 1-second log-returns (n = 21600,N = 0.85n3/4, M = 1

2π
1
8

√
n3/4 logn3/4).

Remark 4.2. A preliminary attempt to investigate the impact of the cutting frequen-
cies on the time scale used to reconstruct the volatility path is due to Mattiussi and
Iori (2010). By modifying the Fejer kernel appearing in the Fourier expansion of
the volatility function with the dependence on a further positive parameterδ, the
authors suggest to choose the Nyquist cutting frequenciesN = n/2, M = N/2 and
then adapting the trajectory to the desired time scale by an appropriate selection of
the parameterδ. Furthermore, they investigate whether an optimal time scale exists
at which the instantaneous volatility matrix should be reconstructed. This is done
by letting N = n/2 andM = N/2 and then choosingδ by minimizing the mean
squared error. In the univariate case, a simulation study is also carried in Mancino
and Recchioni (2015). However, a theoretical result for the optimal choice of the
scale of volatility estimates is still under investigation. The relevance of this issue
becomes manifest when, for instance, we aim at estimating a second order quantity
as the volatility of volatility (see Kanaya and Kristensen (2015) and discussions in
Section 6).

4.3 Fourier Method in the Presence of Jumps

So far we have intentionally left out of the discussion the more sophisticated jump-
diffusion models. Actually, the price model (2.1) can be generalized to allow for a
jump component in addition to the classical continuous Brownian factor, usually de-
scribed through the sum of non-zero random variables, whose sum is controlled by
a Poisson process. The existing volatility and covariance estimators mainly focus on
the estimation of integrated quantities. The most common approaches employ the
Bi-power and Multi-power Variation estimators as proposed by Barndorff-Nielsen
and Shephard (2004), later generalized by replacing the power function with dif-
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ferent specifications (see, e.g., Jacod (2008), Todorov and Tauchen (2012)) and the
threshold method by Mancini (2009).

The Fourier methodology has been extended by Cuchiero and Teichmann (2015)
to estimate the path of the instantaneous volatility and covariance process in the
presence of jumps. We only give a brief outline of the method, addressing the inter-
ested reader to the cited paper.

The procedure has two steps. First, it obtains an estimate of the Fourier coeffi-
cients of a continuous invertible functionρ(σ 2) of the instantaneous volatility (or
of the covariance) by using a jump robust estimator (like the ones cited above). Let
[0,T ] be the time horizon and consider the uniform time grid{0= t n

0 < .. . < tn
[nT ] =

T} with step size∆ t = T/n. The estimator of thek-th Fourier coefficient takes the
form

1
n

[nT ]

∑
j=1

e−i 2π
T ktn

j−1g(
√

nδj(p)), (4.15)

where the functiong can assume different specifications. Second, it uses the Fourier-
Fejer inversion formula as in (4.1) to reconstruct the path of the processρ(σ 2). This
can thus be translated into an estimator of the volatility by inverting the function
ρ(σ2). The estimator of instantaneous volatility obtained so far is consistent and
the Central Limit Theorem holds with rate of convergence equal ton (1−ν)/2, where
ν is the Hölder continuity (between two jumps) of the volatility path. So, the rate of
convergence lies in(0,1/4) approaching the optimal rate 1/4 asν is close to 1/2.

We illustrate the method by considering the caseρg(σ2(t)) = e−σ2(t)/2, that is

we chooseg(x) = cos x. Thus, by (4.15) the estimator ofe−σ2(t)/2 is

1
T

[nT ]

∑
j=1

1
n

FM

(
2π
T

(t − tn
j−1)

)
g(
√

nδj(p)), (4.16)

whereFM(x) is the Fejer kernel (3.10). The performance of the estimator is studied
by simulating a one-dimensional Bates-type model

dp(t) =−
(

1
2

σ(t)2− (ev2
J,p/2−1)ip

)
dt +σ(t)dW1(t)+ JpdNt (4.17)

d logσ(t) =−
(

α 2

2
+(ev2

J,σ/2−1)ip

)
dt + α dW2(t)+ Jσ dNt , (4.18)

whereW1(t) andW2(t), t ∈ [0,T ] are correlated Brownian motions with correlation
λ , Nt is a Poisson process with intensityip responsible for jumps occurring simul-
taneously in price and volatility, whileJ p andJσ are normally distributed with zero
mean and variancesv2

J,p, v2
J,σ respectively. The model parameters are chosen as fol-

lows: α = 0.5, λ = −0.5, the jump rate per day isi p = 20/250, the volatility of
normal jumps arevJ,p = 0.2, vJ,σ = 0.01. We choose the number of the grid points,
n, equal to 21600 that corresponds to one day (T = 1) of 1-second data while the
cutting frequency isM = 128 (approximately a time scale of 1 minute and half).
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As suggested in Cuchiero and Teichmann (2015), the true (simulated) and recon-
structed trajectories are evaluated at 2M+1 points. Fig. 4.7 illustrates that even in
the case of jumps in the log-price and in the variance the trajectory of the log-price
is satisfactorily reconstructed.
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Fig. 4.7 Jump-diffusion model (4.17)-(4.18). Comparison between true (dotted line) and Fourier
estimated volatility (solid line) as a function of time.

Remark 4.3. The jump-robust Fourier method shares the main feature of the Fourier
estimation method, namely, the fact that it allows one to reconstruct the volatility as
a stochastic function of timein the univariate and multivariate case. This property
makes it possible to iterate the volatility estimation procedure and to compute sec-
ond order quantities like the multivariate volatility of the volatility (see Chapter 6),
when the involved processes have jumps.





Chapter 5
High Frequency Analysis: Market
Microstructure Noise Issues

The model-free measurement of volatility has recently received strong impulse by
the availability of high-frequency financial data. Nevertheless, the efficiency of all
the methodologies proposed for accurately estimating the volatility builds on the
observability of the true price process, while observed asset prices diverge from
their efficient values, being contaminated by market microstructure effects.

This section explores therobustnessof the Fourier estimator of volatility to mi-
crostructure noise, more precisely, at which extent applying the Fourier method
without any sophisticatedad hocprocedures provides a reliable value of the asset
volatility. A feasible procedure for designing an optimal mean squared error-based
Fourier estimator is derived by computing analytic expressions for the bias and the
mean squared error of the noise-affected estimator. These formulae provide the tool
to optimize the finite sample performance of the estimator: the number of frequen-
cies to be included in the Fourier series are selected with the aim of minimizing the
mean squared error, for a given number of intra-daily observations. Further, Monte
Carlo experiments confirm that the Fourier estimator is at the same time statistically
efficient and robust to some types of market frictions present in high-frequency data.

5.1 What is the Noise Effect on Fourier Estimator?

The theory presented in Chapters 3 and 4 contrasts with the non observability of
the true price process. In fact, when the price is sampled over small intervals such
as few seconds, the observed price deviates from the efficient/latent price due to
the imperfection of the trading process, as illustrated in Roll (1984), Glosten and
Milgrom (1985), Harris (1991), O’Hara (1995). The econometricians do not ob-
serve the returns of the true return series, but the returns contaminated by market
microstructure effects. Therefore, an estimator of the integrated volatility should be
constructed using the contaminated returns.

When the asset prices are observed without errors, both Realized Volatility and
Fourier method provide us with a consistent estimate of integrated volatility and the

47
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two estimators have comparable statistical properties. On the contrary, the Realized
Volatility calculated from high-frequency returns turns out to be an estimate of the
variation of the noise, rather than of the latent true price process, as it has been em-
pirically observed by Andersen et al (1999a) and theoretically analyzed in Zhang
et al (2005), Bandi and Russell (2008). Therefore, some methods have been pro-
posed to correct the Realized Volatility estimator for the effect of market microstruc-
ture noise, in order to obtain unbiased estimators of the true integrated volatility (see,
e.g., Zhou (1996), Andersen et al (2001a), Zhang et al (2005), Hansen and Lunde
(2006b), Barndorff-Nielsen et al (2008)). A study of these methods in comparison
with the Fourier approach is conducted in Section 5.2.3.

It will be clear after reading this chapter that the Fourier estimator needs no
correction in order to be statistically efficient and robust to various kinds of mar-
ket frictions at the same time. This result is due to the following properties of the
Fourier estimator: on one side it uses all available data by integration; on the other
side the high-frequency noise or short-run noise is ignored by cutting the highest
frequencies in the construction of the Fourier estimator. In other words, when effi-
ciently implemented, the Fourier estimator uses as much as possible of the available
sample path without being excessively biased due to the impact of market frictions.

We describe a feasible procedure to optimize the finite sample performance of the
Fourier estimator of integrated volatility and covariance by minimizing the mean
squared error (MSE hereafter) as a function of the number of frequencies,N, for
a given number,n, of intra-daily observations. This procedure for the choice of a
convenient cut-off frequency allows us to filter out a great portion of variation in the
integrated volatility estimates which is attributed to the noise and can be applied as a
rule-of-thumb in empirical cases. The method to find the optimal cutting frequency
suggests that the optimal MSE-based estimator should be designed using quote-to-
quote returns.

5.2 The Case of Integrated Volatility

In this section we study the performance of the Fourier estimator of integrated
volatility when the asset price is contaminated by microstructure noise effects. The
analysis starts by considering a simple but well consolidated additive model where
the microstructure noise displays an MA(1) structure with a negative first order au-
tocorrelation. The MA(1) model is typically justified by bid-ask bounce effects (see
Roll (1984)). It is known to be a realistic approximation in decentralized markets
where trades arrive in a random fashion with idiosyncratic price setting behavior,
the foreign exchange market being a valid example (see Zhang et al (2005), Bandi
and Russell (2006), Hansen and Lunde (2006b) for additional discussions on this
point). However, as observed by A¨ıt-Sahalia and Jacod (2014), some data on log-
returns may be inconsistent with a simple MA(1) structure. Therefore, we study
also a more general form of additive models, where the noise is correlated with
the efficient returns, and the rounding error model, where the measurement error is
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mainly due to the fact that transaction prices are multiples of a tick size. We pro-
vide analytical formulae of the bias and of the MSE of the Fourier estimator under
MA(1) microstructure noise. This computation will serve as a basis for the optimal
choice of the cutting frequency for a given data sampling interval, when considering
financial return series data.

5.2.1 Starting from the Additive MA(1) Model

Consider a given time interval (e.g., a trading day), scaled to be[0,2π], as usual.
Suppose that the process is observed at a discrete unevenly spaced grid{0= t 0 ≤
t1 ≤ ·· · ≤ tn = 2π} for any n ≥ 1, and that the logarithm of the observed price
process can be split into the sum of two terms

p̃(t j) = p(t j)+η (t j), j = 0, . . . ,n, (5.1)

wherep is the efficient log-price process andη is the microstructure noise com-
ponent. We can think ofp(t) as the log-price in equilibrium, that is the price that
would prevail in the absence of market microstructure frictions.

The following hypotheses hold:

(A) The (latent) price processp(t) satisfies the stochastic differential equation
(3.1).

(M.I) The random shocksη (t j), for 0≤ j ≤ n and for alln, are independent and
identically distributed with mean zero and bounded fourth moment.

(M.II) The true return processδ j(p) := p(t j+1)− p(t j) is independent ofη (t j)
for any j,n.

To simplify the notation, in the sequel we will writeη j instead ofη (t j).

Remark 5.1. The hypothesis that theη j ’s are independent of the incrementsδ j(p)
is discussed in Hansen and Lunde (2006b). Their empirical work suggests that the
independence assumption is not too damaging statistically, when we analyze data in
tickly traded stocks recorded every minute.

Aim: estimation of the integrated volatility by means of the Fourier estimator
defined in (3.5), given the observations of thecontaminated process̃p defined
in (5.1).

In the sequel, we assume that 2π/n is the time distance between adjacent loga-
rithmic prices and denote the integrated volatility byV .

Firstly, consider the Realized VolatilityRV n defined in (3.8): it is a consistent es-
timator of integrated volatility in the hypothesis that the prices are observed without
measurement errors, but in practice, due to market microstructure noise, sampling
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at the highest frequency leads to a bias problem (see Zhou (1996)). In fact, it is easy
to prove (see Zhang et al (2005), Bandi and Russell (2008)) that the bias of the Re-
alized Volatility estimator (3.8) diverges as the numbern of observations increases
and is given by

E[RV n −V ] = 2nE[η 2]. (5.2)

Consider now the Fourier estimator defined in (3.5). The bias is computed as
follows

E[σ̂2
n,N −V ] = 2n E[η 2]

(
1−DN

(
2π
n

))
, (5.3)

whereDN is the rescaled Dirichlet kernel defined in (2.8). The proof is given in
Mancino and Sanfelici (2008) and can be easily obtained using the representation
(3.7). Note that, under the conditionN 2/n → 0, the right hand side of (5.3) tends to
zero. Therefore, if we chooseN “small” with respect to the number of observations
n, the bias of the Fourier estimator is smaller than the bias of the Realized Volatility;
furthermore, it goes to zero forn,N increasing at the proper rate. We can derive the
following conclusion.

The Fourier estimator is asymptotically unbiased under the conditionN 2/n
goes to 0. The result (5.3) shows that in a finite sample, given the number of
datan, a suitable choice of the Fourier frequencyN allows for lower bias with
respect to the Realized Volatility estimator.

We compare now the MSE of the Realized Volatility with that of the Fourier
estimator. The MSE of the Realized Volatility estimator is the following (for the
proof, see Hansen and Lunde (2006b), Bandi and Russell (2008))

MSE(RVn) = 2
2π
n
(Q+ o(1))+ n2α + nβ + γ, (5.4)

whereQ is the integrated quarticity
∫ 2π

0 σ4(s)ds, o(1) is a term which goes to zero
asn goes to infinity and

α := 4E[η 2]2, β := 4E[η 4], γ := 8E[η 2]V +2E[η 2]2−2E[η 4]. (5.5)

Therefore, while the addend 22π
n (Q+ o(1)) is asymptotically vanishing, the poly-

nomialn2α + nβ + γ diverges when the numbern of observations increases.
Moving to the Fourier volatility estimator, for any givenn,N, the MSE takes the

form

MSE(σ̂2
n,N) = 2

2π
n
(Q+ o(1))+ n2α̂ (n,N)+ nβ̂(n,N)+ γ̂(n,N), (5.6)

where

α̂ (n,N) := α
(

1−DN

(
2π
n

))2

,
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β̂(n,N) := β
(

1−DN

(
2π
n

))2

,

γ̂(n,N) := γ+4Q
2π

2N+1
+4(E[η 2]2+E[η 4])

(
2DN

(
2π
n

)
−D2

N

(
2π
n

))
, (5.7)

with α , β , γ as in (5.5) and whereDN is the rescaled Dirichlet kernel defined in (2.8).
The proof of the identity (5.6) is given in Mancino and Sanfelici (2008). Letting
N2/n → 0, then it holds

lim
n,N→∞

n2α̂ (n,N)+ nβ̂(n,N) = 0

and
lim

n,N→∞
γ(n,N) = 8E[η 2]V +2E[η 4]+6E[η 2]2. (5.8)

It follows that, conveniently tuning the parameterN, the MSE of the Fourier esti-
mator does not diverge and it is given by (5.8), which is small in magnitude. The
following conclusion can be drawn.

When microstructure effects are introduced in the model it is no longer true
that the MSE decreases as the sampling frequency increases, as it happens
in the absence of microstructure noise. Nevertheless, while in the presence
of microstructure effects the MSE of the Realized Volatility diverges asn
increases, due to the presence of the terms of ordern 2 andn, the MSE of the
Fourier estimator does not diverge if conditionN 2/n → 0 is met.

As an important byproduct of the MSE computation, a feasible procedure for
selecting the cutting frequencyNcut is proposed in Mancino and Sanfelici (2008). In
fact, given the analytical expression (5.6) of the MSE for the noise-affected volatility
estimator as a function of the sampling frequency and of the number of Fourier
coefficients, then an optimal cutting frequencyNcut can be chosen depending on the
number of observations, the noise moments and the quarticity.

Formulae (5.3) and (5.6) allow us to measure the bias and MSE of the volatility
estimates also in the case of empirical market data, where the efficient price and the
volatility are not available. The practical calculation of (5.3) and (5.6) hinges on the
estimation of the relevant noise moments as well as on the preliminary identification
of the integrated volatilityV and quarticityQ. Since the noise moments do not vary
across frequencies under the MA(1) model, in computing the MSE estimates we use
sample moments constructed using quote-to-quote return data in order to estimate
the relevant population moments of the noise components. Details on how it is pos-
sible to estimate these quantities and the corresponding Matlab� codes are given in
Appendix B.2.1 Preliminary estimates ofV andQ are obtained by computinĝσ2

n,N

1 Other possible estimators of these quantities are discussed in Barndorff-Nielsen et al (2008),
although the statistical gains are minor.
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or RVn and the estimator defined by (3.20) or (3.17) for the integrated quarticity
using sparse sampled data.

Feasible procedure: use quote-to-quote returns and minimize the MSE for-
mula (5.6) as a function of the cutting frequencyNcut . For any given sample
sizen, the optimal cutting frequencyNcut is obtained by direct minimization
of the estimated MSE by comparing the computed MSE values over distinct
integer-valuedN, having the Nyquist frequency as upper bound. (5.6) can be
minimized on average using intra-day returns over many days or, alternatively,
for every daily ex-post variation measure so thatNcut could vary from day to
day.

Recently, a different mathematical framework for the derivation of the optimal
cutting frequency is presented by Wang (2014). Given the sample sizen, an explicit
asymptotic expression for the optimal cutting frequency is provided. Under the con-
dition N2/n → 0 asn,N → ∞, the MSE-optimal cutting frequency is given by the
formula

Nopt =−b+(−b3− d+
√

d(d +2b3))1/3+(−b3− d−
√

d(d+2b3))1/3, (5.9)

where b = (5+ 2ρ)/(12), d = −(3nρ(ρ + 2) + 2π2(1+ ρ))/(16π2) and ρ =
E[V ]/(2E[η 2]). We have performed the following simulation exercise assuming
the GARCH diffusion model (3.15). Intra-day noisy prices are affected by a Gaus-
sian noiseη with mean 0 and varianceE[η 2] = 0.000142. We simulate 500 daily
replications for 24 hours of trading with a total ofn = 86400 second-by-second
returns per day. In Fig. 5.1, the true and estimated bias and MSE of the Fourier
estimator, as given by (5.3) and (5.6), are plotted as a function of the number of
the Fourier coefficients. The minimum of the true MSE is 6.29e-4 and is attained
for Ncut = 793 which, at least theoretically, corresponds to a sampling frequency
of 24·60/(2 ·793) = 0.91 minutes. The MSE of the estimator obtained by feasible
minimization of the estimated MSE (5.6) is 6.41e-4 and the corresponding optimal
cutting frequencyNcut = 823. On the other side, the optimal cutting frequency as
specified by formula (5.9) yieldsNopt = 2383, with a corresponding MSE value of
1.50e-2, that is suboptimal.

5.2.2 Moving to Alternative Microstructure Noise Models

In the previous section a practical way to efficiently implement Fourier estimation
method with high-frequency data has been proposed. Here, Monte Carlo evidence
is given of the fact that such (intentionally) elementary rule of selecting the cutting
frequency still works under more general noise provision.
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Fig. 5.1 True (dotted line) and estimated (solid line) bias and MSE of the Fourier estimator as
a function of the number of the Fourier coefficients. Quote-to-quote returns. Parameter values:
θ = 0.035,ω = 0.6365,λ = 0.2962,p(0) = log100,σ2(0) = 0.6365.

To this end, we consider two alternative models for market microstructure noise.
First, we relax the assumption(M.II) by considering the noise correlated with the
efficient returns, following an example in Hansen and Lunde (2006b). More pre-
cisely, we assume that(M.I) and(M.II)′ hold, where

(M.II)′ the random shocks are defined asη̃ j := ζδ j(p)+η j, for any j, beingζ
a real constant2 andη j as in(M.I).

The second situation we study is the case of measurement errors due to the fact
that transaction prices are multiples of a tick size. More precisely, we assume:

(MR) p̃(t) := [ p(t)
lα

] lα , beinglα the tick size and[x] the integer closest tox.

Then, the noiseη is defined byη (ti) = p̃(ti)− p(ti) and can be modeled as a
rounding off problem (see A¨ıt-Sahalia and Jacod (2014), Li and Mykland (2014)).

Remark 5.2. The rounding noise is very different from the additive white noise,
in many respects. In particular, it is not independent fromp but, differently from

2 ζ = 0 corresponds to the case with independent noise assumption.
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(M.II)′, it is a deterministic and known function ofp. Rounding results in autocor-
related returns with negative autocorrelation at lags 1 and 2, see Fig. 5.2. Markets
often specify a minimum price increment, also known as a tick size; this results in
prices which are often unchanged for a few consecutive observations, a property
which is not compatible with a semimartingale model (see Fig. 5.2). In fact, one
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Fig. 5.2 Portion of trajectory of a rounded log-price process ˜p and sample autocorrelation function
of log-returns of observed prices at a fixed 1 second frequency. For each lagj = 0,1,2, . . . ,20 on
the x-axis, the correlation ofδi(p̃) and δi− j(p̃), estimated from observationsi = j+ 1, . . . ,n, is
reported.

implication of rounding is that both observed returns and volatility can be zero over
short intervals, an outcome that has zero probability of occurrence in any model that
contains a Brownian semimartingale component and with non-noisy observations.

A realistic treatment of rounding effects would require that we operate on price
levels instead of log returns3. However, rounding at price level has smaller impact
on log-returns even if we assume an initial price of an order of magnitude of 2
dollars and a tick size of one cent. Therefore, in our simulations we operate rounding
directly on the log-pricep(t).

We test the performance of the Fourier estimator of integrated variance under
microstructure noise of the kind(M.I)− (M.II)′ and(MR) through a Monte Carlo
simulation. The infinitesimal variation of the true log-price process and spot volatil-
ity is given by the square-root model Cox et al (1985)

dp(t) = σ(t) dW1(t)
dσ2(t) = γ(β −σ2(t))dt + νσ(t) dW2(t),

(5.10)

whereW1, W2 are independent Brownian motions. The parameter values used in the
simulations reflect the features of IBM time series:γ = 0.01, β = 1.0, ν = 0.05.
The initial value ofσ 2 is set equal to one, whilep(0) = log2 to make the effect of
rounding more evident. The simulations are run for 500 daily replications.

3 An example of rounding at price level is provided in Section 5.4.
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Fig. 5.3, shows the true and estimated bias and MSE for the integrated volatil-
ity computed from 1 second returns contaminated by dependent noise and by
rounding errors, respectively. Dependent noise is defined by(M.II) ′, with ζ = 0.1
andη j ∼ N (0,ξ 2), ξ 2 = 0.000142, while rounding is operated with a tick size
lα = 0.01. We notice that in both cases the estimated curves are very close to the true
ones, although the formulae (5.3) for the bias and (5.6) for the MSE were obtained
under different noise structure. In the case of dependent noise the optimal cutting
frequency obtained by minimization of the true MSE is rather smallN cut = 271 and
yields an MSE value of 2.90e-4. The MSE achieved by the feasible procedure, i.e.
by minimization of estimate (5.6), is 2.99e-4 forNcut = 313. Note that the cutting
frequency (5.9) selects the frequencyNcut = 825 that gives a MSE larger by an or-
der of magnitude. Finally, the effect of rounding is rather small if compared to other
forms of microstructure effects. This reflects on a higher optimal cutting frequency
Ncut = 768 at whichMSE = 9.33e−5. The MSE achieved by the feasible procedure
is 9.74e-5. These values are resumed in Table 5.1 for the convenience of the reader.
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Fig. 5.3 True (dotted line) and estimated (solid line) bias and MSE of the Fourier estimator as a
function of the number of the Fourier coefficients. Second-by-second returns over a daily trading
period ofT = 6 hours, for a total of 500 days.
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Table 5.1 Optimal MSE based Fourier estimator characteristics under(M.I)− (M.II)′ and(MR)
microstructure noise. Unfeasible optimization of the true MSE versus feasible optimization of
estimate (5.6).

MSE optimization UNFEASIBLE FEASIBLE
Noise structure MSE Ncut MSE Ncut

(M.I)− (M.II)′ 2.90e-4 271 2.99e-4 313
(MR) 9.33e-5 768 9.74e-5 934

5.2.3 Comparison with Other Estimators

This section studies the Fourier estimator performance in comparison with other es-
timators that have been specifically proposed in the literature to handle microstruc-
ture noise effects.

Alternative methods, which aim at controlling the microstructure noise effects,
are essentially based on three techniques:sub-sampling, bias-correction andpre-
averaging. The simplest strategy to reduce the impact of noise is given by the
sparse sampling of the available data, that is using a sampling interval of some
minutes (Barndorff-Nielsen and Shephard (2002) suggests 5 minutes). However,
this methodology ignores a lot of information and it is not statistically efficient.
For a more efficient implementation of the sparse sampling method, Zhang et al
(2005) proposed a sub-sampling approach, namely the Two Scales Realized Volatil-
ity, that averages lower frequency realized volatilities. Bias-correction makes use
of various order auto-covariances to correct the spurious noise-induced autocorre-
lation of observed log-returns, see, e.g., the bias-corrected estimator by Hansen and
Lunde (2006b) and the Realized Kernels estimator by Barndorff-Nielsen et al (2008,
2011b). The pre-averaging technique has been proposed by Jacod et al (2009) and is
based on the idea that if one averages a number of observed log-prices, one is closer
to the latent processp.

Besides the well knownRealized Volatility defined in (3.8), hereafter denoted by
RV , we consider the following estimators of the integrated volatility belonging to
the above mentioned classes: thebias corrected estimator

HL := RV +2
n

n−1

n−1

∑
j=1

δj(p̃)δj+1(p̃), (5.11)

theflat-top Realized Kernels

RK :=
H

∑
h=−H

k

(
h

H +1

) n

∑
j=|h|+1

δj(p̃)δj−|h|(p̃), (5.12)

with kernelsk(·) of Bartlett, Cubic andTukey-Hunning (hereafterT H2) type4. The
Realized Kernels may be considered as unbiased corrections of the Realized Volatil-

4 Bartlett kernel:k(x) = 1− x; Cubic kernel: k(x) = 1− 3x2 + 2x3; T H2 kernel: k(x) =
sin2[π/2(1− x)].
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ity by means of the firstH autocovariances of the returns. In particular, whenH is
selected to be zero the Realized Kernels become the Realized Volatility. Our analy-
sis includes also theTwo-Scale estimator

T SRV :=
S

S−1

(
1
S

S

∑
s=1

RV(G(s))− 1
S

RV

)
. (5.13)

The Two-Scales (subsampling) estimator is a bias-adjusted average of lower fre-
quency realized volatilitiesRV(G(s)) computed onS non-overlapping observation
subgridsG(s) containingnS observations.

ThePre-Averaging estimator is defined as

PA :=
12
kn

n−kn+1

∑
s=0

δ̄s(p̃)2− 6
k2

n

n

∑
s=1

δs(p̃)2, (5.14)

where the pre-averaged returns areδ̄s(p̃) := 1
kn

(
∑kn−1

j=kn/2 p̃ts+ j −∑kn/2−1
j=0 p̃ts+ j

)
.

The proposed Monte Carlo exercise simulates discrete data from the continuous
time stochastic volatility model (5.10) with microstructure contaminations. In par-
ticular, we consider the microstructure noise model (5.1), assuming(M.I) - (M.II):
the logarithmic noisesη j are i.i.d. Gaussian with zero mean and variance equal to
E[η 2] and independent fromp. The simulations are run for 500 daily replications,
starting from the initial valuesσ 2(0) = 1 and p(0) = log100. In order to avoid
other data manipulations such as interpolation or imputation which might affect the
numerical results, we generate (through simple Euler Monte Carlo discretization)
high-frequency evenly sampled true and observed returns by simulating second-by-
second return and variance paths over a daily trading period ofT = 6 hours, for a
total of 21600 observations per day. Then, we sample the observations for different
choices of the uniform sampling intervalρ(n)= T/n so that we obtain different data
sets(t j, p̃(t j), j = 0,1. . .n) with σ recorded at everyt j. For instance, the choice
n = 360 corresponds to a sampling period ofρ(360) = 1 minute.

Feasible optimal rules for choosing the bandwidth-parameters employed by the
considered estimators are discussed in the cited papers and resumed in Table 5.2 for
the reader’s convenience. For the Fourier estimator, the optimal cutting frequencyN
can be easily obtained by direct minimization of the estimated MSE given by (5.6).
Note thatQ is the integrated quarticity estimated by means of low frequency returns.

Table 5.3 shows the performance of the different estimators when the key param-
eters are obtained by the feasible rules described in Table 5.2. For the Fourier and
T SRV estimators the feasible procedure allows us to obtain levels of MSE that are
close to the real optimum. On the contrary, the feasible optimization of theRK and
PA estimators is not able to capture the actual minimum of the MSE and leads to
slightly less efficient results so that, in practice, especially at the highest frequen-
cies, their performance is comparable to the other ones. We notice that, at a sam-
pling frequency of 5 minutes the effects of the microstructure noise are not evident
and theRV andHL estimators are as efficient as the others. For frequencies higher
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Table 5.2 Optimal bandwidth-parameters.

Estimator Optimal bandwidth
RV (3.8) n∗ = (T Q/4E[η 2]2)1/3

HL (5.11) n∗ = number of price observations

RK (5.12) H = c∗ξ 4/5n3/5, c∗ = (144/0.269)1/5

ξ 2 = E[η 2]/
√

Q

T SRV (5.13) S = c∗n2/3, c∗ = (T Q/48E[η 2]2)−1/3

PA (5.12) kn = c∗ξ 4/5n3/5, ξ 2 = E[η 2]/
√

Q

Table 5.3 Comparison of optimized integrated volatility estimators. Feasible optimization.

MSE BIAS
1 sec 30 sec 1 min 5 min 1 sec 30 sec 1 min 5 min

RV 3.76e+1 4.12e-2 1.13e-2 2.32e-36.13e+0 2.01e-1 1.03e-1 1.52e-2
Sparse samp.RV 2.48e-3 2.48e-3 2.20e-3 2.32e-32.63e-2 3.00e-2 2.78e-2 1.52e-2
HL 3.43e-3 9.24e-4 1.34e-3 5.51e-3-3.55e-4 -4.49e-4 1.56e-4 -3.70e-3
Sparse samp.HL 4.76e-3 4.20e-3 4.11e-3 5.51e-3-2.33e-3 -1.38e-3 -7.71e-4 -3.70e-3
Fourier 2.99e-4 1.11e-3 1.52e-3 3.55e-38.95e-3 1.66e-2 1.94e-2 3.27e-3
BartlettRK 2.04e-4 1.17e-3 1.82e-3 6.45e-38.58e-4 3.97e-4 5.53e-5 -5.80e-3
CubicRK 2.25e-4 1.23e-3 1.94e-3 6.45e-38.39e-4 4.91e-4 -8.41e-5 -5.80e-3
TH2 RK 1.47e-4 8.78e-4 1.45e-3 5.56e-36.06e-4 3.19e-4 -1.66e-4 -4.32e-3
T SRV 1.01e-4 7.49e-4 1.34e-3 5.43e-3-3.99e-5 -1.67e-3 -1.49e-3 -1.11e-2
PA 1.67e-4 1.18e-3 2.03e-3 8.56e-3-3.65e-4 -1.29e-2 -2.07e-2 -7.42e-2

than 1 minute, the noise-induced autocorrelation of returns becomes effective and
theRV starts to strongly overestimate the underlying integrated volatility. The first
order bias-correction of estimatorHL compensates the microstructure effects and
reduces the bias of theRV . Nevertheless, for each data set(t j, p̃(t j), j = 0,1. . .n),
with n = 21600,720,360,72, we tried to improve the performance of theRV and of
the bias-corrected estimatorHL by sparse sampling, according to the rule-of-thumb
mentioned above giving the optimal sampling frequencyT/n ∗. Obviously, sparse
sampling has a positive effect onRV , while it has negative effect onHL. Neverthe-
less, both estimators are not competitive with the others at the highest frequencies.

At the highest frequency, theTSRV estimator provides the best estimate both in
terms of MSE and of bias. Moreover, as already observed in the literature, the finite
sample performance of the cubic and Bartlett kernels is virtually identical and the
Bartlett kernel is slightly preferable at 1 sec frequency. The smoothTH2 kernel pro-
vides the best volatility estimate and tends to select more lags than the others. Very
strikingly, for all the sampling frequencies the optimally designed Fourier estimator
provides very good results, even in comparison with methods specifically designed
to handle market microstructure contaminations, and is practically unaffected by
noise, having only a slightly higher MSE and bias for quote-to-quote returns.

Remark 5.3. The Fourier-Fejer estimator (3.9) slightly improves the behavior of the
Fourier estimator with Dirichlet kernel for very high frequencies (see Mancino and
Sanfelici (2008)).
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5.3 The Case of Integrated Covariance

The estimation of multivariate volatilities is a challenging task for the combined
effects of microstructure noises and asynchronous trading times. In fact, when con-
sidering intraday financial data, trades on different assets are not likely to occur at
the same time. In such situations, the addition of a moderate amount of indepen-
dent and uncorrelated noise may not have great effect on the estimates and it may in
some cases even compensate the effects due to non-synchronicity. On the other side,
Griffin and Oomen (2011) find that the ordering of covariance estimators in terms
of efficiency depends crucially on the level of microstructure noise; in particular for
high level of noise an estimator which is consistent for asynchronous observations,
like (3.29), can become less efficient than the standard Realized Covariance.

This chapter studies the finite sample properties of the Fourier covariance esti-
mator in the presence of microstructure effects. Under a benchmark price model, we
analytically compute the bias and the MSE for given finite sample sizes of the dif-
ferent assets and given number of Fourier coefficients included in the series. Under
suitable growth conditions for these parameters, it is possible to prove that

• the bias of the Fourier estimator asymptotically vanishes,
• the MSE of the Fourier estimator converges to a constant.

As a consequence, even if we do not proceed to any bias correction of the estimator,
a suitable cutting of the highest frequencies makes the finite sample bias negligible.
Moreover, we provide a practical way to optimize the finite sample performance of
the Fourier estimator as a function of the number of frequencies by the minimization
of the MSE, for a given number of intra-daily observations.

For simplicity, we consider the case of two assets. Assume the following model
for the observed log-prices

p̃i(ti
j) := pi(ti

j)+η i(ti
j) for i = 1,2, (5.15)

where the processespi are driven by model (2.1) withbi ≡ 0, and the noise model
is specified by the assumptions5

(Mm.I) p(t) := (p1(t), p2(t)) andη (t) := (η 1(t),η 2(t)) are independent for any
t;

(Mm.II) η (t) and η (s) are independent fors �= t, E[η (t)] = 0 for any t and
E[η i(t)η k(t)] = ωik < ∞, for anyt, with i,k = 1,2.

In order to obtain simple analytic formulae, the asset prices(p̃ 1, p̃2) are observed
on particular grids ofregular asynchronous trading. The asset 1 trades at regular
points:

Π 1 =

{
t1
i ∈ [0,2π] : i = 0, . . . ,n1−1 and t1

i+1− t1
i =

2π
n1−1

}
.

Also asset 2 trades at regular points:

5 This noise structure only allows for contemporaneous and not serial correlation in the noise.
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Π 2 =

{
t2

j ∈ [0,2π] : j = 0, . . . ,n2−1 and t2
j+1− t2

j =
4π

n1−1

}
,

wheren2 = n1/2, but no trade of asset 1 occurs at the same time of a trade of asset
2. Specifically, the link between the trading times of the two assets is the following:
t2

j = t1
2( j−1)+1 +

π
n1−1 for j = 1, . . . ,n2. Moreover, supposet 1

1 = 0 andt1
n1

= 2π.
For simplicity, denoten := n1 and assumen is even. We consider the Fourier-Fejer
estimator (3.31) of the covariance between asset 1 and 2, according with Remark
5.3, and we will denote it bŷΣ1,2

N,n.
The bias of the Fourier covariance estimator under microstructure noise satis-

fying (Mm.I)-(Mm.II), neglecting minor end-effects, is computed in Mancino and
Sanfelici (2011b) and is equal to

E[Σ̂1,2
N,n −

∫ 2π

0
Σ1,2(t)dt] =

n
2−1

∑
j=1

2( j−1)+3

∑
i=2( j−1)+1

(FN(t
1
i − t2

j )−1)E[
∫ t1i+1

t1i

Σ1,2(t)dt].

(5.16)
From (5.16) the following result can be stated

the Fourier covariance estimator is asymptotically unbiased in the presence of
microstructure noise, under the conditionN/n → 0 asn,N → ∞.

Remark 5.4. Apparently, the microstructure noise plays no role in equation (5.16)
which corresponds to (3.28) under the specific regular asynchronous trading setting.
Actually, under regular asynchronous trading, trades on different assets never occur
at the same time. As a consequence, the potential bias of the Fourier estimator is not
affected by the presence of microstructure noise satisfying(Mm.I)-(Mm.II), but is
exclusively caused by the asynchronicity, asFN(t1

i − t2
j ) �= 1 in formula (5.16). This

fact motivates the growth rate conditionN/n → 0 instead ofN 2/n→ 0 asn,N → ∞.

On the contrary, the presence of microstructure noise has effects on the Fourier
estimator’s MSE which is given by

E[(Σ̂1,2
N,n −

∫ 2π

0
Σ1,2(t)dt)2] = o(1)+2ω22

n−1

∑
i=1

F2
N(t

1
i − t2

n
2−1)E[

∫ t1i+1

t1i

Σ11(t)dt]

(5.17)

+2ω11

n
2−1

∑
j=1

F2
N(t

1
n−1− t2

j )E[
∫ t2j+1

t2j

Σ22(t)dt]+4ω22ω11F2
N(t

1
n−1− t2

n
2−1),

whereo(1) is a term which goes to zero, forN/n → 0 asn,N → ∞. Theo(1) term in
(5.17) is the MSE of the estimator for a pure diffusive process; it converges to zero,
as the multivariate estimator is consistent under conditionN/n→ 0 from (3.25). The
other terms appear because of the microstructure noise components. The second and
third terms are constant for increasingn. Finally, the term 4ω11ω22F2

N(t
1
n−1− t2

n
2−1)
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converges to the constant 4ω11ω22 asn,N increase at the proper rateN/n → 0. We
conclude as follows.

Under the conditionN/n → 0, the MSE of the Fourier multivariate volatil-
ity estimator:(i) converges to 0 (i.e. the estimator is consistent) under asyn-
chronous observations,(ii) in the presence of microstructure noise (satisfying
(Mm.I)− (Mm.II)) does not diverge at the highest data frequency.

Remark 5.5. In the case ofsynchronous trading times, the Fourier covariance esti-
mator exhibits a behavior similar to the univariate case analyzed in Section 5.2. In
particular, if the two asset price processes are recorded on the same time grid (which
for simplicity we suppose equally spaced with mesh size 2π/n) and assumptions
(Mm.I) - (Mm.II) hold, then it holds

E[Σ̂1,2
N,n −

∫ 2π

0
Σ1,2(t)dt] = 2nω1,2

(
1−FN

(
2π
n

))
. (5.18)

Thus, in the synchronous case, the Fourier estimator of covariance is asymptotically
unbiased in the presence of microstructure noise, ifN 2/n → 0 asn,N → ∞.

5.3.1 Comparison with Other Estimators

In this section the performance of the Fourier covariance estimator is compared with
that of different non-parametric estimators, taking into account two main intrinsic
features of high-frequency data, namely the microstructure noise contamination and
the asyncronicity.

The following covariance estimators will be considered in our simulation study.
A first group of estimators requires a preliminary synchronization procedure, such
as linear or piecewise constant interpolation, which yields the observations times
{0≤ τ1 ≤ τ2 ≤ ·· · ≤ τn ≤ 2π} for both assets. TheRealised Covariance estimator
RC1,2 defined in (3.27), is not consistent under asynchronous trading and highly
biased in the presence of noise effects, see also Hayashi and Yoshida (2005), Zhang
(2009). Several modifications of the Realised Covariance have been proposed. We
consider here theRealised Covariance plus Leads and Lags

RCLL1,2 :=∑
i

L

∑
h=−l

δi+h(p1)δi(p2). (5.19)

The estimator (5.19) has good properties under microstructure noise contaminations
of the prices, but it is still not consistent for asynchronous observations.

The following two estimators employ the synchronization procedure known as
refresh time, i.e. the first time when both posted prices are updated, setting the price
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of the quicker asset to its most recent value (last-tick interpolation). The first one
is theMultivariate Realised Kernel estimator, introduced in Barndorff-Nielsen et al
(2011a) and defined by

K1,2 :=
n

∑
h=−n

k

(
h

H +1

)
Γ 1,2

h , (5.20)

whereΓ 1,2
h is theh-th realised autocovariance of the two assets andk(·) belongs to a

suitable class of kernel functions6. The second one, proposed and calledModulated
Realised Covariation by Christensen et al (2010), is a consistent estimator of the
integrated covariance

MRC1,2 =

(
1− 6

k2
n

)−1
[

n
n− kn+2

12
kn

n−kn+1

∑
s=0

δ̄s(p1)δ̄s(p2)− 6
k2

n

n

∑
s=1

δs(p1)δs(p2)

]
,

(5.21)

where the pre-averaged return process is given by

δ̄s(pi) :=
1
kn

(
kn−1

∑
j=kn/2

pi
ts+ j

−
kn/2−1

∑
j=0

pi
ts+ j

)
, (5.22)

andkn is a bandwidth parameter. We will also consider theAll-Overlapping estima-
tor, AO1,2, defined by (3.29), which is consistent under asynchronous prices obser-
vations, but not efficient in the presence of microstructure noise as follows from the
studies in Griffin and Oomen (2011), Voev and Lunde (2007). Finally, the ideas of
pre-averaging and All-Overlapping synchronization have been merged in thePre-
averaged All-Overlapping estimator by Christensen et al (2010). This estimator can
be implemented on the original data without prior alignment of prices and is defined
as

PAO1,2 =
16
k2

n

n1−kn+1

∑
i=0

n2−kn+1

∑
j=0

δ̄i(p1)δ̄j(p2) 1{(t1i ,t1i+kn
]∩(t2j ,t2j+kn

]�= /0}, (5.23)

where the indicator function discards pre-averaged returns (5.22) not overlapping in
time.

Remark 5.6. (Optimal bandwidth selection rules). All the parameters involved in the
design of the different estimators can be optimized on a daily basis. As suggested
by Barndorff-Nielsen et al (2011a), when implementing the multivariate Realised
Kernel, on each day the univariate optimal MSE-based bandwidth selection applied

to each asset price individually givesHi = c∗ξ 4/5
i n3/5, wherec∗ = (144/0.269)1/5,

ξ 2
i = ωii/

√
Qii andQii is the integrated quarticity of asseti estimated by means of

6 In our analysis, we will consider the Parzen weight kernelk(x) defined as 1− 6x2 + 6x3 for
0≤ x ≤ 0.5, 2(1− x)3 for 0.5< x ≤ 1 and 0 otherwise.
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low frequency returns. The two bandwidths are then averaged to obtain the globalH
value. In the case of theMRC1,2 and thePAO1,2 estimators, a recommended band-
width parameter iskn = (k(1)n + k(2)n )/2, wherek(i)n = θin3/5 andθi = c∗ξ 4/5

i . In the
case of the Fourier estimator, we build the optimal MSE-based estimator by choos-
ing the cutting frequencyNcut which minimizes the estimated MSE (5.17) instead
of the true one over a finite range ofN values.

We simulate discrete data from the continuous time bivariate GARCH model
(4.13). Moreover, we assume that the logarithmic noisesη 1(t),η 2(t) are i.i.d.
Gaussian, possibly contemporaneously correlated and independent fromp. We set
the noise-to-signal ratio ς, defined as the noise standard deviation over the to-
tal standard deviation for 1 second returns, equal to 5.5 which is in fact quite
relevant. We also consider the case of dependent noise, assuming for simplicity
η j

i = ζ (p j(t j
i )− p j(t j

i−1))+ η̄ j
i , for j = 1,2, with η̄ j

i i.i.d. Gaussian andζ = 0.1.
We generate (through simple Euler Monte Carlo discretization) high-frequency

evenly sampled true and observed returns by simulating second-by-second return
and variance paths over a daily trading period ofh = 6 hours, for a total of 21600
observations per day. Then we sample the observations according to the regular non-
synchronous trading sampling scheme, with durationρ1 between trades for the first
asset andρ2 = 2ρ1 for the second and displacementδ ·ρ1 between the two, i.e. the
second asset starts tradingδ ·ρ1 seconds later. From the simulated data, integrated
covariance estimates can be compared to the value of the true variance quantities.
The results are reported in Table 5.4 and have to be related to those of Table 3.2.
Within each table entries are the values of the MSE and bias, using 500 Monte Carlo
replications. Rows correspond to different estimators, while columns correspond to
different type of noise, namely contemporaneously uncorrelated (ω i j = 0 for i �=
j), contemporaneously correlated and dependent on the price process, respectively.
When the noise correlation matrix is not diagonal, the correlation is set to 0.5.

For any considered size of the synchronization grid (0.5, 1 and 5 minutes), the
RC1,2 estimator has poor performances; the lead/lag bias correction partially com-
pensates the effect of noise, at least in the cases of noise independent of the efficient
price. As already found by Griffin and Oomen (2011), the performance of theAO 1,2

estimator is strongly affected by the extent of noise. The Fourier estimator always
provides a valid alternative, even in the case of dependent noise although the MSE
estimate (5.17) we use to select the cutting frequency does not account for depen-
dence between noise and efficient price. The only estimator which is able to provide
a good alternative to the Fourier estimator is theMRC1,2 and, in the case of depen-
dent noise, thePAO1,2 estimator. TheK1,2 estimator provides acceptable estimate
for low levels of noise but is rapidly swamped by the presence of large microstruc-
ture effects. Barndorff-Nielsen et al (2011a) themselves in their simulations find out
that there is not a great difference between the multivariate Realised (Parzen) Ker-
nel and the sparse sampled Realised Covariance. Maybe this could be related to the
synchronization procedure, which may result in excessive data reduction.

In agreement with our theoretical analysis, the proposed simulation study sug-
gests the following conclusion.
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Table 5.4 Comparison of integrated volatility estimators. Noise ratioς = 5.5. ρ1 = 5 sec,ρ2 = 10
sec with a displacement of 2 seconds for Reg-NS trading. The low frequency returns necessary for
the RC-type estimators are obtained by imputation on a uniform grid. The number of leads and
lags for theRCLL1,2 estimators isl = L = 1. All the other estimators have been optimized on a
feasible and daily basis as indicated in Remark 5.6.

Reg-NS + Unc Reg-NS + Cor Reg-NS + Dep
MSE bias MSE bias MSE bias

Σ̂1,2
N,n1,n2

2.40e-3 -1.08e-22.20e-3 -1.00e-29.85e-3 -1.77e-2

RC1,2
0.5min 3.24e-2 -1.57e-13.16e-2 -1.59e-12.12e-1 -1.51e-1

RC1,2
1min 1.28e-2 -8.21e-21.18e-2 -7.75e-21.37e-1 -7.69e-2

RC1,2
5min 1.26e-2 -1.31e-21.31e-2 -1.04e-25.06e-2 -1.70e-2

RCLL1,2
0.5min 7.83e-3 -1.47e-37.05e-3 1.98e-31.34e-1 -3.54e-3

RCLL1,2
1min 1.05e-2 2.23e-39.22e-3 1.96e-38.97e-2 -1.33e-2

RCLL1,2
5min 3.73e-2 4.36e-33.19e-2 1.56e-26.15e-2 6.22e-3

AO1,2 1.08e-2 1.71e-59.15e-3 1.34e-34.02e-1 4.95e-2
K1,2 6.56e-3 -1.80e-36.04e-3 -6.17e-42.06e-1 2.95e-2
MRC1,2 4.71e-3 -1.14e-24.56e-3 -1.22e-27.38e-3 -1.11e-3
PAO1,2 9.25e-3 -2.62e-39.55e-3 -1.61e-31.49e-2 -7.87e-3

The Fourier covariance estimator is not much affected by the presence of noise
and asynchronicity, so that it becomes a very interesting alternative especially
when microstructure effects are particularly relevant in the available data.

5.3.2 Asymptotic Results

The analysis conducted so far has shown the robustness in finite sample of the
Fourier estimator (as well as of the modified Fourier-Fejer estimator) of integrated
volatility and covariance with respect to microstructure noise effects and asyn-
chronicity. Asymptotic normality for a general class of Fourier estimators, named
Fourier Realized Kernel, of anyk-th Fourier coefficient of the covariance (and, in
particular, the integrated covariance) has been recently established by Park et al
(2016).

The Fourier Realized Kernel exploits the fact that the main convolution formula
(2.4) leading to the estimator of the Fourier coefficients of the covariance given by
(2.12) can be modified through a weighting function as follows

ck(Σ
i, j
ni ,n j ,N

) := ∑
|s|≤m/2

KN(
2π
n
)cs(dpi

ni
)ck−s(dp j

n j
) (5.24)
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wherem= n/N andn is the biggest number of sample sizes amongst all assets, while
the kernelKN satisfies suitable integrability conditions7. In particular, the Fourier-
Fejer estimator (3.31) corresponds to the choice of the Fejer kernel. The bandwidth
N → ∞ with N/n → 0, wheren is the smallest number of sample sizes between all
assets.

The Central Limit theorem holds under some general conditions that allow for
microstructure noise effects and asynchronicity between different assets with rate
1/5 for the volatility estimator (as well as for the covariance estimator with syn-
chronous observations) and(ni ∧ n j)

θ with θ = (2−β)/5∈ (0,1/5] if the sample
sizes are of different order. As a consequence, the rate of convergence becomes
slower if the degree of relative liquidity between assets increases.

Remark 5.7. The Fourier Realized kernel estimator coincide with the multivariate
Realized kernel by Barndorff-Nielsen et al (2008, 2011a) only in the special case
when trading times are synchronized and equally spaced. Park et al (2016) show
that when the data is not synchronously observed, the Fourier Realized kernel has a
superior performance using all the data.

QUA SECONDO ME PUO ANDARE QUALCHE COSA SIMULATA COME
LINTON

We conclude this section with a simulation study which illustrates the robustness
of the Fourier Realized Kernel with La Vallee Poussin kernel, already proposed
byMancino and Sanfelici (2008) and further investigated by Park et al (2016). This
choice corresponds to the Fourier-Fejer estimator (3.31):

Σ̂1,2
N,n := 2πc0(Σ1,2

n1,n2,N
) =

(2π)2

m/2+1 ∑
|s|≤m/2

(
1− |s|

m/2

)
cs(d p̃1

n1
)c−s(d p̃2

n2
) , (5.25)

where, as already mentioned,m = n/N while p̃1
n1

and p̃2
n2

are the observed prices,
with noise model(Mm.I) where the variance of the noise is chosen proportional to

the sample integrated quarticity:ς2
√

n−1
j ∑

n j
i=1σ4

j (t
j
i ), j = 1,2 whereς = 0,0.001,0.01

is the noise to signal ratio.
The log-prices are generated using the stochastic volatility model with perfect lever-
age (Barndorff-Nielsen et al (2011a), Park et al (2016)):

dp j(t) = 0.03dt −0.3σ j(t)dB j(t)+
√

1− (0.3)2σ j(t)dW (t)

σ j(t) = e−
5
16+

1
8ρ j(t),

dρ j(t) =− 1
40

ρ j(t)dt + dB j(t), (5.26)

where the random variableρ j(0) has a distributionN (0,20) while B j(t), j = 1,2
andW (t) are independent Brownian motions.

7 These conditions are stated by Assumption 3′ in Park et al (2016)
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We simulate one-second data for 6.5 hours of trading with a total ofn = 23400
second-by-second returns per day over 1000 Monte Carlo sample. We asses the
impact of the asynchronicity on the estimator using two data-sets. The first data-
set consists of prices Poisson sampled at rate 1.5 seconds and 2 seconds denoted
by (1.5,2). The second one consists of prices sampled at rate 1.5 seconds and 30
seconds denoted by(1.5,30).
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Fig. 5.4 True (dotted line) and estimated integrated covariance as a function of the parameterN
whenς = 0 (solid line) andς = 0.5 (dashed line) (left panel) using the(1.5,2) data (left panel)
and(1.5,30) data. The data-sets are obtained by numerical integration of the stochastic volatility
model (5.26)

Figure 5.4 confirms the results illustrated in Park et al (2016) on the robustness of
this estimator to the data asynchronicity and to non-negligible microstructure noise
effects even when large values ofN are used.

AGGIUNGERE ALTRO SUL FATTO CHE QUESTO STIMATORE E’ PUR
SEMPRE FOURIER BASED ED E’ questo che lo rende efficiente???

5.4 The Case of Spot Volatility

This section analyzes the performance of the spot volatility estimator under differ-
ent microstructure noise scenarios through a simulation study. As it concerns the
robustness with respect market microstructure effects, the Fourier estimator of spot
volatility (4.1) inherits the properties of the integrated volatility estimator studied in
Section 5.2.

We consider four microstructure noise models. The first one is the additive
MA(1) model specified by the assumptions(M.I) - (M.II) (see Section 5.2). The
second and third model are also additive models, but, for the second model, the
assumption(M.I) is replaced by
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(M.I)′ the random shocksη (t j) for any j = 0,1, . . . ,n are allowed for negative
first order autocorrelation,

while for the third one, we consider the case when the noise is correlated with the
efficient returns, as specified by assumption(M.II) ′ in Section 5.2.2.

The last noise specification, denoted by(MR), takes into account the fact that
asset prices involve rounding errors. The observed log-price are defined as follows

p̃(t j) = log

([
exp(p(t j))

lα

]
lα

)
, j = 0, . . . ,n, (5.27)

where, as already mentioned,[x ] denotes the integer closest tox while l α is the fixed
rounding error level (i.e. the tick size). As highlighted in Section 5.2.2, given that
stock prices are often rounded to the cent, the choicel α = 0.01 mimics the financial
markets.

Let us now describe the considered data-set. The log-prices,p(t j), j = 0,1, . . . ,n,
are generated simulating the following stochastic volatility model

dp(t) = (µ −σ(t)2/2)dt +σ(t)dW1(t), (5.28)

dσ2(t) = γ(θ −σ2(t))dt + νσ(t)dW2(t), (5.29)

whereW1(t) andW2(t) are correlated Brownian motions, beingλ the correlation.
This model, with the addition of jumps, has been considered in Li and Mykland
(2014) to study the effect of rounding errors on integrated volatility estimators.
We setν = 0.5/252,γ = 5/252,θ = 0.1, µ = 0.05/252,λ = −0.5, σ 2(0) = 1,
p(0) = log(9). The noise componentsη (t j), for any j = 0,1, . . . ,n, have Gaussian
distribution with mean zero and variancẽη 2. We choosẽη = ς std(r) wherestd(r)
is the standard deviation of the 1-second returns andς = 0.8, 3.2, while ζ appear-
ing in (M.II)′ is set equal 0.1. The numerical simulations are obtained integrating
numerically the stochastic differential equations (5.28)-(5.29) by the explicit Eu-
ler discretization scheme to compute second-by-second return and variance paths
over a daily trading period ofT = 1 day (6 hours trading). We simulate a total of
500 trading days andn = 21600 observations per day. The volatility is estimated at
every minute.

We measure the performance of the spot volatility estimator,σ̂2
n,N,M(t), defined in

(4.1) over the entire interval[0,T ] evaluating numerically the relative mean squared
error

RMSE(t) := E
[
(σ̂2

n,N,M(t)−σ2(t))2/σ2(t)
]

and the bias
BIAS(t) := E

[
σ̂2

n,N,M(t)−σ2(t)
]
.

Specifically, the performance over the interval[0,T ] is evaluated using the integrated
relative mean squared errorIRMSE := (1/T )

∫ T
0 RMSE(t)dt and the integrated bias,

IBIAS := (1/T )
∫ T

0 BIAS(t)dt.
The study contained in Section 5.2 suggests that the microstructure noise is ig-

nored by the Fourier estimator of integrated volatility by carefully selecting the cut-
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ting frequencyN which appears in (4.2) through the Dirichlet kernel. In the case of
spot volatility, a second parameter,M, has to be set. In particular, it is interesting
to know whether it is possible to choose the cutting frequenciesN andM indepen-
dently of the specific point in timet, that is in a global manner, and still preserve the
performance of the spot volatility Fourier estimator over the whole time interval.

In order to analyze how the cutting frequenciesN and M affect the robust-
ness of the Fourier estimator, we compute the Fourier spot volatility estimates
using several values of the frequenciesN and M in the form N = n α /2 and
M = 1

2π
1
8nβ . More specifically, we use the valuesα = 1,3/4,2/3,1/2,1/3 and

β = 3/4,2/3,1/2,1/3,1/4,1/6 to estimate the spot volatility; then, we select the
pair (α ,β) which minimizes the integrated relative mean squared errorIRMSE. In
the absence of noise we should chooseα = 1 andβ such that12 < β < 1, according
to (4.6) and the numerical study in Section 4.1.2. However, in the present exercise
different values ofα andβ are explored, in virtue of the fact that the highest fre-
quencies must be cut in order to filter out microstructure noise effects arising from
high-frequency data.

Table 5.5 Performance of the Fourier estimator in the absence of noise (ς = 0.0) and under differ-
ent microstructure noise effect models.

Noise model(M.I)-(M.II) Noise model(M.I)′-(M.II)

ς (α ,β) IRMSE IBIAS ς (α ,β) IRMSE IBIAS

0.0 2.77e-4 -1.03e-3 0.0 2.77e-4 -1.03e-3
0.8 ( 3

4 ,
1
2) 2.77e-3 1.31e-2 0.8 (3

4 ,
1
2) 2.43e-3 3.12e-3

3.2 ( 2
3 ,

1
2) 1.15e-2 4.87e-2 3.2 (3

4 ,
1
2) 7.23e-3 6.10e-2

Noise model(M.I)-(M.II)′ Noise model(MR)

ς (α ,β) IRMSE IBIAS lα (α ,β) IRMSE IBIAS

0.0 2.77e-4 -1.03e-3 0.0 2.77e-4 -1.03e-3
0.8 ( 3

4 ,
1
2) 2.79e-3 1.57e-2 0.01 (3

4 ,
1
2) 2.51e-3 1.99e-3

3.2 ( 2
3 ,

1
2) 1.12e-2 4.71e-2 0.1 (1

2 ,
1
2) 3.93e-2 3.31e-2

Table 5.5 shows the results of the simulation study. The first line of each panel
contains the results in the absence of noise; in this case the cutting frequenciesN
andM are chosen to be equal ton2 and 1

2π
1
8

√
n lnn, respectively, according to the

study in Section 4.1.2. In the sequent lines, from left to right, Table 5.5 shows the
noise to signal ratioς in the case of additive noise or the rounding levell α in the
case of rounding error, the pair(α ,β) which minimizes the integrated relative mean
squared error, the corresponding integrated relative mean squared error and bias.
The results displayed in the table confirm a satisfactory performance of the Fourier
estimator in the presence of both additive and rounding noises, due to its ability to
filter out the noise by a suitable choice of the cutting frequenciesN andM.

Remark 5.8. Table 5.5 indicates that the optimized estimator works well over the
entire time interval without being dependent on time (as well as on specific proper-
ties of the volatility process), differently from other spot volatility estimators whose
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defining parameters need to be tuned at each specific point in time. This fact may be
relevant when the estimated volatility is used to calibrate stochastic volatility mod-
els. In fact, if the value ofM andN are independent of time, then the estimatorσ̂2(t)
is a continuous function oft and this can help the calibration process. For further
discussion on this point see also Mancino and Recchioni (2015).

We conclude this section showing a final comparison with the Fejer Kernel-based
realized spot volatility estimator (4.3), which can be erroneously identified with the
Fourier estimator. The columns of Table 5.6 have the same format as those in Ta-
ble 5.5 except for the pair(α ,β) that is replaced byβ , as the frequencyN does
not appear in the definition (4.3). Table 5.6 gives clear numerical evidence of the
differences between the two estimators. The Fejer Kernel-based estimator provides
accurate volatility estimates in the absence of noise but is highly biased in the pres-
ence of additive noises. In the case of rounding noise with low rounding level the
performance of the Fejer Kernel-based estimator is satisfactory: this last finding
confirms the observations made in Section 5.2.2 about the less damaging effect of
rounding errors with respect to additive noises.

Table 5.6 Performance of the Fejer Kernel-based estimator (4.3) in the absence of noise and under
microstructure noise effect models.

Noise model(M.I)-(M.II) Noise model(M.I)′-(M.II)

ς β IRMSE IBIAS ς β IRMSE IBIAS

0.0 1
2 2.15e-4 -1.04e-3 0.0 1

2 2.15e-4 -1.04e-3
0.8 1

2 1.59e+0 1.26e+0 0.8 1
3 4.91e+0 2.21e+0

3.2 1
2 4.10e+2 2.02e+1 3.2 1

2 1.25e+3 3.45e+1

Noise model(M.I)-(M.II)′ Noise model(MR)

ς β IRMSE IBIAS lα β IRMSE IBIAS
0.0 1

2 2.15e-4 -1.04e-3 0.0 1
2 2.15e-4 -1.04e-3

0.8 1
3 2.19e+0 1.48e+0 0.01 1

2 1.49e-2 3.21e-2
3.2 2

3 4.19e+2 2.04e+1 0.1 1
2 7.79e+0 1.51e+0

Remark 5.9. A more comprehensive study in Mancino and Recchioni (2015) shows
that the Fourier estimator of spot volatility has a competitive performance on high-
frequency data even in comparison to bias-adjusted estimators, such as the Two-
Scales realized spot variance estimator which is proposed in Zu and Boswijk (2014)
as a localization of the Two Scales estimator. The Fourier estimator satisfactorily
performs in all the different scenarios illustrated in this section, without requiring
anyad hocadjustment.





Chapter 6
Getting Inside the Latent Volatility

This chapter introduces the reader into some recent financial applications of the
Fourier estimator. We exploit here the ability of the method to reconstruct the volatil-
ity as astochastic function of timein the univariate and multivariate case; in other
words, we can handle the volatility function as an observable variable. This property
makes it possible to have insights into various volatility related financial quantities,
such as volatility of volatility and leverage. The chapter begins with an empirical
exercise in which the latent volatility is estimated; then, in Sections 6.3 and 6.4 it
is shown how to iterate the procedure for the purpose of parameter identification
and calibration of stochastic volatility models and how to estimate in a model-free
fashion a second order effect, known as price-volatility feedback rate. Finally, in
Section 6.5 we analyze the forecasting power of the Fourier estimator of integrated
volatility by a simple Monte Carlo experiment and an empirical application. Further
directions for other applications are given in Section 6.6.

6.1 SCEGLI TITOLO E MODIFICA ANCHE INIZIO
PARAGRAFO SUCCESSIVO

A current theme in the financial market literature concerns the question of whether
financial prices may be adequately described by continuous sample path processes,
or whether the price movements exhibit discontinuities, or jumps. The answer to
the question has important implications for risk management and asset pricing more
generally. The estimation of parametric jump diffusion models remains difficult, and
the empirical results based on daily or coarser frequency data typically do not allow
for a very clear distinction between pure diffusion multi-factor stochastic volatility
models and lower order models with jumps. Of course, the daily data most often
used in the estimation of the models may simply not be informative enough to pro-
vide a firm answer. At the same time, the direct estimation of specific parametric
volatility models with large samples of high-frequency intra-day data remains ex-
tremely challenging from a computational perspective and moreover requires that

71



72 6 Getting Inside the Latent Volatility

all of the market microstructure complications inherent in the high-frequency data
be properly incorporated into the model.

Under ideal conditions of no microstructure effects, the sum of successively finer
sampled high-frequency squared returns converges to the quadratic variation of the
price process. The quadratic variation, of course, includes both the continuous sam-
ple path variation and the jumps. However, combining the Realized Variation with
the Realized Bipower Variation measure first introduced by Barndorff-Nielsen and
Shephard (2004, 2005), allows for a direct nonparametric decomposition of the total
price variation into its two separate components. Based on these ideas, it is possi-
ble to develop methods for disentangling the diffusion component from jumps in a
given time series of intra-day data. In particular, Corsi et al. (2010) proposed test
statistics based on the relative difference(RV − T BV )/RV between the Realized
Variance and the Threshold Bipower Variation. This jump statistics affords a simple
nonparametric estimator of the contribution to total price variation coming from the
jump component.

The theory underlying the development of the jump detection statistics formally
hinges on the notion of increasingly finer sampled high-frequency returns. In prac-
tice, however, the sampling frequency is invariably limited by the actual quotation,
or transaction frequency. Moreover, the observed high-frequency prices are further
“contaminated” by a host of market microstructure frictions, including price dis-
creteness and bid-ask spreads. These effects combine to render the basic assumption
of a semimartingale price process invalid at the tick-by-tick level. We have repeat-
edly advocated the use of coarser sampling frequencies as a simple way to alleviate
these contaminating effects, while maintaining most of the relevant information in
the high-frequency data.

We analyze quote-to-quote logarithmic prices of the Italian stock index futures,
named FIB30, for the period January 11, 2000 to January 31, 2001, for a total of
269 trading days. We use only the prices of the next-to-expiration contracts, which
are the most liquid ones, with the FIB30 expiring quarterly. This time series is part
of the data set used by?. The advantage of using the futures is that it is a traded
asset and, moreover, the stock index futures is always more liquid than the portfolio
which constitutes the index.

We have a total of 1514523 quotes over the period and on average a new quote
arrives every 5.67 seconds. Table 6.4 describes the main features of our data set.

Variable Mean Std. Dev. Min Max

FIB30 46182.98 2090.73 39182.50 51330.00
log-return (%)7.9723e-62.6890e-2-3.3731e+01.5150e+0

Table 6.1 Summary statistics for the sample of the FIB30 index over the period January 11, 2000
to January 31, 2001 (1514523 trades). “Std. Dev.” denotes the sample standard deviation of the
variable.

Figure 6.1 shows the time plot and the ACF of the tick-by-tick log-returns (upper
panels) and of the 5 minute returns. Quotes prior to 9:30 a.m. are removed to elim-
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inate opening quotes from our sample. Sparse sampling seems to eliminate a large
portion of microstructure effects, although some statistically significant correlation
in returns remains at lags larger than one.
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Fig. 6.1 Time plot of the log-returns and the ACF for FIB30 over the period January 11, 2000 to
January 31, 2001.

We estimate the daily integrated volatility on each day of the sample by means
of the Fourier estimator, using tick-by-tick data, and by the Realized Volatility es-
timator from 5 minute returns. We construct sparse sampled intraday returns using
a sort oftick time sampling scheme?, where thet j ’s are chosen to be the time of
the first transaction occurring a given period, say 5 minutes, after the previous one.
Alternative sampling schemes, such ascalendar time sampling combined with an
interpolation or imputation procedure would give the same qualitative results, even-
tually introducing further sources of noise. We also exclude all overnight returns.

The presence of jumps in our sample is revealed by the fact that the distribution of
daily log-returns rescaled by the estimated daily volatility is not Gaussian. We apply
the Jarque-Bera (JB) test at the 5% significance level to test the null hypothesis that
the sample comes from a normal distribution with unknown mean and variance,
against the alternative that it does not come from a normal distribution, but the test
fails.
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Jumps have been identified and measured using the Threshold Bipower Variation
based method of Corsi et Al. (2010), which is based on the joint use of bipower
variation and threshold estimation. This method provides a powerful test for jump
detection, which is employed at the significance level of 99.99%. This procedure
allows to identify a percentage of days with jumps around 12.27%. Since the TBV
estimator is not robust to microstructure noise, we compute the TBV measure of
the integrated volatility in the presence of jumps from 5 minute returns. Those days
where the jump contribution is statistically significant can be eliminated from the
sample or, alternatively, should be treated using jump robust volatility estimators,
such as the TBV itself or the one discussed in Section 4.3.

After the elimination of the days containing jumps, the Jarque-Bera test for nor-
mality of the standardized daily returns givesh = 0 and a p-value of 0.1875. We
performed also the Kolmogorov-Smirnov test to compare the standardized daily re-
turns to a standard normal distribution. We obtainh = 0 andp = 0.6632, so that the
test can not reject the null hypothesis at the 5% significance level. The estimated
mean and standard deviation of the standardized daily returns are given by 0.0420
and 1.0707, respectively.

Figure 6.2 shows the time plot of daily integrated volatility over the whole sample
(top panel) and after the elimination of days with jumps (bottom panel)

0 50 100 150 200 250 300
0

2

4

6

8
x 10

−4 Integrated Volatility − row data

 

 
Fourier
RV

0 50 100 150 200 250
0

2

4

6

8
x 10

−4 Integrated Volatility − processed data

 

 
Fourier
RV

Fig. 6.2 Time plot of daily integrated volatility over the whole sample (top panel) and after the
elimination of days with jumps (bottom panel) for FIB30 over the period January 11, 2000 to
January 31, 2001.
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Figure 6.3 shows the time plot of daily integrated volatility over the whole sam-
ple obtained by the Fourier estimator and the Realized Volatility. The figure displays
also the estimates obtained by the TBV estimator and the Fourier jump robust esti-
mator of Section 4.3.The mean quadratic error between TBV and the Fourier
jump robust estimator is 3.1748e-9.
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Fig. 6.3 Time plot of daily integrated volatility for FIB30 over the period January 11, 2000 to
January 31, 2001.

AGGIUNGERE COMMENTI E CONCLUSIONE!!!!!!!!!!!!!!!!!!

6.2 Latent Volatility: an Empirical Analysis

We begin with a merely illustrative example of Fourier estimation method with em-
pirical data. The reader can find the relevant codes employed in the Appendix B.

The considered data set is composed by quote-to-quote logarithmic prices of the
Italian stock index futures, named FIB30, on January 14, 2000. Only the prices of
the next-to-expiration contracts, which are the most liquid ones, are employed, with
the FIB30 expiring quarterly. The advantage of using the futures is that it is a traded
asset and, moreover, the stock index futures is always more liquid than the portfolio
which constitutes the index. We have a total of 7170 quotes and on average a new
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quote arrives every 4.14 seconds. The smallest return is -0.43% and the largest is
0.43%. Figure 6.4 shows the time series plot of the tick-by-tick returns and the auto-
correlation up to lag 20. The first-order autocorrelation is significantly negative and
equal to -0.3592, with 95% confidence interval[−0.0236,0.0236], while after lag 1
they are insignificantly different from 0 (or marginally significant). Thus, the MA(1)
approximation seems to capture the main economic effects in the data. Quotes prior
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Fig. 6.4 Time plot of the tick-by-tick returns and the ACF for FIB30 on January 14, 2000.

to 10 a.m. have been removed to eliminate opening quotes from our sample. In Fig-
ure 6.5 we plot the estimated conditional MSE and bias of the Fourier estimator
based on quote-to-quote returns, forN ranging from 1 to�n/2�= 3078. The MSE
is estimated by implementing formula (5.6), with the sample moments constructed
using quote-to-quote returns to consistently estimate the moments of the noise. Pre-
liminary estimates ofV andQ are obtained using 2-minute returns. The minimum of
the MSE for the Fourier estimator is 1.565e-010 attained atN = 319. As suggested
by the theory exposed in the previous chapters, by choosing a suitable cutting fre-
quencyN it is possible to render the Fourier estimator invariant to short-run noise
introduced by market microstructure effects, with consequent efficiency gains.

Fig. 6.6 plots the Fourier volatility estimates as a function of the maximum num-
ber of Fourier coefficientsN based on tick-by-tick data (blue line) and the cor-
responding Realized Volatility estimate based on tick-by-tick data (red line). We
clearly see that the microstructure effects contained in high-frequency data seriously
spoil the Realized Volatility estimates and make sparse sampling strongly necessary.
For instance, the Realized Volatility estimate 1.323e-4 based on 2 minute log-returns
(black line) seems to filter out great portion of noise. The small circle indicates the
Fourier estimate 1.355e-4 attained atN = 319, which is the cutting frequency min-
imizing the MSE estimated by (5.6). Since our theoretical results indicate that the
Realized Volatility estimator is more biased than the Fourier estimator in the pres-
ence of market microstructure noise, the fact that the Realized Volatility estimate
for commonly used sampling frequencies (e.g. 2 minutes) is 1.323e-4 indicates that
the actual volatility might be higher than predicted by the commonly used Realized
Volatility, as already noticed in Nielsen and Frederiksen (2008).
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Fig. 6.5 Estimated conditional bias and MSE of the Fourier estimator as a function of the maxi-
mum number of Fourier coefficients.
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Fig. 6.6 Fourier volatility estimate as a function of the maximum number of Fourier coefficientsN
from tick-by-tick data (blue line); Realized Volatility based on tick-by-tick data (red line); Realized
Volatility based on 2 minute returns (black line).

6.3 Factor Identification for Stochastic Volatility Models

We consider a fairly general class of stochastic volatility models in continuous time,
including classical models such as Hsieh (1991), Stein and Stein (1991), Hull and
White (1987). The log-price and variance processes satisfy

dp(t) = σ(t)dW (t)+ a(t)dt
dσ2(t) = γ(t)dZ(t)+ b(t)dt ,

(6.1)
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whereW andZ are correlated Brownian motions with instantaneous correlationρ(t)
andσ(t), γ(t), a(t), b(t) are adapted random processes satisfying mild integrability
conditions (see Barucci and Mancino (2010) for details). In this model, jumps in the
price and in the volatility are ruled out, however, extensions in this direction can be
obtained using the method presented in Section 4.3.

In Chapter 4 the Fourier estimation method has been efficiently used to com-
pute pathwise the diffusion coefficient in (6.1), i.e.σ(t). Here, we proceed a step
further and we apply the Fourier approach in order to obtain accurate estimates of
the volatility of the variance processγ(t) and of the covariance between the price
and the instantaneous variance, also in the case when the data are contaminated by
microstructure noise1.

The intuition is the following. The knowledge of all Fourier coefficientsF (σ 2)(k)
of latent instantaneous variance processσ 2(t) allows us to iterate the main convo-
lution formula from Theorem 2.1, in its univariate version, in order to compute the
volatility of the volatility process; analogously, using the multivariate expression, it
is possible to compute theleverage, that is the covariance between the price and the
variance. More precisely, the convolution formula applied to the variance process is
specified through the following limit in probability

F (γ2)(k) = lim
M→∞

2π
2M+1 ∑

|s|≤M

F (dσ2)(s)F (dσ2)(k− s), (6.2)

where we can use the integration by parts formula to write the Fourier coefficients
of dσ2, that is, for any integers,

F (dσ2)(s) = isF (σ2)(s)+
1

2π
(σ2(2π)−σ2(0)). (6.3)

Similarly, the following result, relating the Fourier coefficients of returns and vari-
ance process to the Fourier coefficients of the leverage processη (t), holds in prob-
ability

F (η )(k) = lim
M→∞

2π
2M+1 ∑

|s|≤M

F (dσ2)(s)F (dp)(k− s). (6.4)

6.3.1 Volatility of Volatility

In this section, we focus on the estimation of theintegrated stochastic volatility
of volatility using high-frequency data. Given the estimated Fourier coefficients of
the volatility process (3.4) and relying on (6.2), the Fourier estimator of the second

1 An early attempt to use the Fourier method to identify the parameters of stochastic volatility
models is present in Malliavin and Mancino (2002b), Barucci and Mancino (2010), Ren`o (2008),
while a deep study is done in Sanfelici et al (2015), Curato and Sanfelici (2015), Curato (2015).
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order quantity
∫ 2π

0 γ2(t)dt is defined as follows2

γ̂2
n,N,M :=

(2π)2

M+1 ∑
|s|≤M

(
1− |s|

M

)
s2 cs(σ2

n,N)c−s(σ2
n,N). (6.5)

Notice that in order to define the estimator (6.5), the integration by parts formula
(6.3) has been replaced with the following approximation

cs(dσ2
n,N)

∼= iscs(σ2
n,N). (6.6)

The estimator (6.5) is consistent in probability and asymptotical unbiased in the
presence of MA(1) microstructure noise, under the conditions thatN = n α (0 <
α < 1/2) andM = nβ (0< β < α/4), beingn the sample of the underlying price
process. The proof can be found in Sanfelici et al (2015).

We highlight that, according to definition (6.5), the computation of the volatil-
ity of volatility needs only to pre-estimate the Fourier coefficients of the volatility
process from the asset returns and does not require a preliminary estimation of the
instantaneous volatility. In this respect, the Fourier estimator of the volatility of
volatility is notably different from the other proposed estimators, which first esti-
mate the volatility path using some consistent estimate of the instantaneous volatil-
ity and then estimate the volatility of volatility using the estimated volatility process
as a proxy of the unknown paths. The rationale is that the reconstructed (estimated)
path of the volatility is plugged into an estimator of integrated volatility, e.g., the
Realized Volatility (see, for instance, Barndorff-Nielsen and Veraart (2013), Vetter
(2011)). Therefore, a large number of observations for the price process is necessary,
as it is statistically clear that the integrated variance of the volatility process can be
estimated only on a larger time scale than the one used for estimating the volatility
path from the observed prices. This yields a huge loss of information contained in
the original dataset. On the other side, it is well known that spot volatility estimation
is quite unstable, especially in the presence of microstructure effects as it happens
with high-frequency data. This point is summarized in the following box.

The Fourier estimator reconstructs the volatility of volatility using as input the
Fourier coefficients of the volatility and, ultimately, the Fourier coefficients of
the observable log-returns. In other words, it uses only integrated quantities
from the whole available dataset. This fact renders the method easily imple-
mentable and computationally stable.

In the context of the stochastic volatility model (6.1), the estimator (6.5) is
consistent in probability and asymptotical unbiased in the presence of MA(1) mi-
crostructure noise, under the conditions thatN = nα (0 < α < 1/2) andM = nβ

(0< β < α/4), beingn the sample of the underlying price process. The proof can

2 In (6.5) we have chosen to add a Barlett kernel, which improves the behavior of the estimator for
very high observation frequencies.
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be found in Sanfelici et al (2015). The rate of convergence of the estimator is still to
be derived.

Remark 6.1. It should be clear that, based on (6.2) and approximation (6.6), a
Fourier estimator of theinstantaneous volatility of volatility can be defined by the
same procedure adopted in the definition (4.1): in the first step estimate thek-th
Fourier coefficients of the volatility of volatility; in the second step, use the Fourier-
Fejer inversion formula to write the estimator of the spot quantity. Finally, we re-
mark that the method proposed can be extended without any conceptual difficulties
to the multidimensional setting.

6.3.2 Leverage

The so calledleverage effect refers to the relationship between returns and the cor-
responding volatility which tend to be negatively correlated. One possible economic
interpretation of this phenomenon was developed by Black (1976) and Christie
(1982) and is connected with the concept of financial leverage (debt-to-equity ratio).
As asset prices decline, companies become automatically more leveraged since the
relative value of their debts rises relative to that of their equities. The probability of
default rises and then their stocks become riskier, inducing a higher volatility. From
a mathematical point of view, the no leverage hypothesis means that the process
σ(t) is independent from the Brownian motionW in model (6.1). This hypothesis
simplifies the study of the properties of the volatility estimator, but is not realistic
for the analysis of equity returns.

It appears evident from (6.4) that in the context of the Fourier approach the def-
inition of an estimator of the leverage process can be based on the same approxi-
mation (6.6) as used for the volatility of volatility. Therefore, we define the Fourier
estimator of theintegrated leverage

∫ 2π
0 η (t)dt by

η̂n,N,M :=
(2π)2

2M+1 ∑
|s|≤M

i scs(σ2
n,N)c−s(dpn). (6.7)

Similar to the volatility of volatility Fourier estimator, even the definition (6.7) does
not require the preliminary estimation of the instantaneous volatility path, but only
the estimated Fourier coefficients of the volatility.

Remark 6.2. The asymptotic properties of this estimator have been studied by Cu-
rato and Sanfelici (2015), Curato (2015), who also perform an extensive simulation
study of its efficiency. In finite sample, the Fourier estimator of the leverage effect
turns out to be accurate in the presence of non-equidistant observations of the price
process and microstructure noise contaminations.

Remark 6.3. The same argument illustrated in Remark 6.1 applies to the leverage
estimator. Thus, aFourier estimator of spot leveragecan be defined as follows
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η̂n,N,M,L(t) := ∑
|k|≤L

(
1− |k|

L

)
eitkck(ηN,M), (6.8)

where

ck(ηN,M) :=
2π

2M+1 ∑
|s|≤M

i scs(σ2
n,N)ck−s(dpn).

6.3.3 Empirical Analysis

In order to illustrate the efficiency of the Fourier estimators (6.5) and (6.7), we con-
sider a case study based on 5-second returns of the S&P 500 index recorded at the
Chicago Mercantile Exchange (CME) on March 4th, 2013. The sample contains
4921 observations. Table 6.2 describes the main features of our data set. High fre-

Variable Mean Std. Dev. Min Max

S&P 500 index1518.43 3.56 1512.291525.27
log-return (%) 9.35e-5 4.84e-3 -1.36e-15.19e-2

Table 6.2 Summary statistics for the sample of the traded CME S&P 500 index on March 4, 2013
(4921 trades). “Std. Dev.” denotes the sample standard deviation of the variable.

quency returns are contaminated by transaction costs, bid-and-ask bounce effects,
etc., leading to biases in the variance measures. Fig. 6.7 shows the time plot of the
log-returns and the autocorrelation function for the row 5-second data (upper pan-
els) and for the 5-minute aggregated data (lower panel). Row data exhibit a strongly
significant positive first order autocorrelation and higher order autocorrelations re-
main significant up to lag 11. Sparse sampling at 5 minute frequency make the data
free from microstructure effects.

As a benchmark for the Fourier estimator of volatility of volatility (resp. of lever-
age), we use thePre-estimated Spot variance-based Realized Varianceof Barndorff-
Nielsen and Veraart (2013), which we callPSRV (resp. thePre-estimated Spot
variance-based Realized Leverageof Barndorff-Nielsen and Veraart (2013), Myk-
land and Zhang (2009), which we callPSRL). These estimators are consistent in
the absence of microstructure frictions. For the reader’s convenience, we recall their
construction. Hypothetically, let us assume that the variance processσ 2 is observed
at equally spaced times{ j∆n : j = 0,1,2, . . . ,�T/∆n�}, for some∆n > 0 such that
∆n → 0, asn → ∞. For any functionf , denote∆ j f := f ( j∆n)− f (( j−1)∆n).

The PSRV estimator is then defined as the sum of squared increments over the
time interval[0,T ]

PSRVn(σ2) :=
�T/∆n�
∑
j=1

(∆ j(σ2))2. (6.9)
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Fig. 6.7 Time plot of the tick-by-tick log-returns and ACF for S&P 500 index on March 4, 2013.

Similarly, thePSRL estimator is defined as the bias corrected sum of products of
the spot variance increments times the log-returns over the time interval[0,T ]

PSRLn := 2
�T/∆n�
∑
j=1

∆ j(σ2)∆ j(p). (6.10)

However, since volatility is unobservable, we have to replace the variance process
σ2(t) with a consistent spot variance estimator, such as the locally averaged realized
variance defined for anyt ∈ (0,T ) by

σ̂2(t) :=
1

Knδn

�t/δn�+Kn/2

∑
j=�t/δn�−Kn/2

(δj(p))2, (6.11)

whereδj(p) := p( jδn)− p(( j−1)δn) is the j-th log-return computed on a different
time scale at which we observe the logarithmic asset pricep, with mesh sizeδn > 0.
This estimator is constructed over a local window of sizeKnδn, where we require
Kn → ∞ such thatKnδn → 0. The spot volatility is estimated on a finer time scale
than the one used in formulas (6.9) and (6.10). Then, we must assumeδ n < ∆n.
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Fig. 6.8 S&P 500 index on March 4, 2013. Integrated volatility of volatility estimated by the
Fourier method using 5-second returns (upper panel) and by the PSRV estimator (lower panel) as
a function of the highest frequencyN of return coefficients employed and of the sampling interval
δn, respectively.

Remark 6.4. The condition imposed on the choice of the time scalesδn and∆n for
the estimatorsPSRV andPSRL represents a limit for the efficiency of such proce-
dures. On one side, it requires using huge datasets of high-frequency returns, where
market microstructure effects likely become manifest. On the other side, the choice
of the second level time scale∆n implies a loss of the information contained in the
original time series. ThePSRV andPSRL estimators are not robust to microstruc-
ture noise. Therefore, in the presence of microstructure effects, the choice of the
sampling intervalδn is conditioned by the well known bias-variance trade off. How-
ever, we remark that sparse sampling may produce a loss of the rich information
contained in the original high-frequency dataset.

Figure 6.8 shows the integrated volatility of volatility estimated by the Fourier
method (upper panel) and by thePSRV (lower panel), as a function of the high-
est frequencyN of return coefficients employed and of the sampling intervalδn,
respectively. The volatility signature plots clearly indicate that the bias induced by
market microstructure effects dies for sampling frequencies larger than 10 minutes.
The impact of market microstructure effects on the 10-minute Realized Volatility
measure for the S&P 500 index on this day can therefore be regarded as negligi-
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ble. However, for low frequencies thePSRV estimator becomes downwards biased
because sparse sampling has a severe impact on the cardinality of the database. In
particular, for any value of the sample sizenS thePSRV is estimated at the frequency
∆n corresponding toKn/2 ticks, where the parameterKn is chosen asKn = 2

√
nS.

This implies that most of the data are neglected when estimating the second order
quantities so that the volatility of volatility estimates are poor, especially when we
start from sparse sampled data i.e.nS � n. In the case of the Fourier estimatorγ̂2
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Fig. 6.9 S&P 500 index on March 4, 2013. Integrated leverage estimated by the Fourier method
using 5-second returns (upper panel) and by the PSRL estimator (lower panel) as a function of the
highest frequencyN of return coefficients employed and of the sampling intervalδn, respectively.

defined in (6.5), the value of the parameterM is set to 3, according with the growth
conditions ensuring both the consistency of the Fourier estimator and its asymptot-
ically unbiasedness in the presence of microstructure noise, that isN = O(n α ) and
M = O(nβ) with 0 < α < 1

2 and 0< β < α
4 . We remark that the Fourier estima-

tor makes use of all then observed prices, because it reconstructs the signal in the
frequency domain and therefore it can filter out microstructure effects by a suitable
choice ofM andN instead of reducing the sampling frequency. We can see that for
N larger than 250 the estimates become much stable.

Fig. 6.9 shows the daily integrated leverage estimated by the Fourier method and
by thePSRL estimator as a function of the highest frequencyN of return coeffi-



6.4 Volatility Feedback and Market Instability 85

cients employed and of the sampling intervalδn, respectively. When estimating the
leverage effect, a larger variability in the estimates can be observed if compared to
other quantities such as volatility or quarticity. The cutting parameterM in (6.7) is
set equal to 2, on the basis of the theoretical and empirical results obtained in Cu-
rato and Sanfelici (2015), whileKn = 2

√
nS, wherenS is the total number of sparse

sampled returns. For instance, when sampling returns at 10-minute frequency, the
sample size isnS = 41. From the plot, it is evident that the Fourier methodology pro-
vides quite stable estimates at cut-off frequenciesN that turn out to be much smaller
than the Nyquist frequency (i.e.N � n/2= 2460), whereas thePSRL estimator is
quite unstable as the estimates strongly depend on the sampling frequency.

6.4 Volatility Feedback and Market Instability

Feedback effects of assets prices on volatilities are widely recognized in the finan-
cial market literature, both theoretically and empirically. Volatility feedback and
leverage effects are related to the same phenomena: the leverage effect explains
why a negative return causes an increase in the volatility and was first discussed in
Black (1976), Christie (1982); on the contrary, the notion of volatility feedback ef-
fect is based on the argument that volatility is priced and an increase in the volatility
requires a higher rate of return from the asset, which can only be produced by a
decline in the asset price as observed by French et al (1987). Moreover, in Bekaert
and Wu (1997) the interaction of these two effects is analyzed and used to explain
the irregular behavior of volatility causing instability in financial markets such as
excess volatility, volatility persistence and volatility smile.

The volatility feedback rate is a second order quantity which is supposed to de-
scribe the facility for the market to absorb small perturbations; therefore, it is re-
lated to the change through time in the rescaled variation of the stochastic process
describing the asset price.

Let p(t) be the (discounted) asset price process3. For simplicity, assume that the
drift coefficient is zero (i.e., we work under the risk neutral measure), the compu-
tation with non-zero drift is in Malliavin and Thalmaier (2006) Chapter 3. Suppose
the log-asset price satisfies the model

dp(t) = σ(p(t)) dW (t)− 1
2

σ2(p(t))dt, (6.12)

where the volatility functionσ is positive and twice differentiable. For shortness,
denoteσ(t) := σ(p(t)).

Remark 6.5. Note that in (6.12) the volatility is modeled as a level dependent quan-
tity (i.e. an unknown time independent function of asset price). There are different
motivations for this type of dependence. First of all, this way to model asset price

3 We present here the univariate case; the extension to a finite number of assets can be found in
Barucci et al (2003).
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volatility is well suited to capture the relationship between volatility and asset price-
return. The simplest way to model the negative relation between asset price-return
and volatility is to assume a constant elasticity variance model, see Cox and Ross
(1976). Level dependent volatility has been also conjectured to reproduce the im-
plied volatility smile, see Derman and Kani (1994), Dupire (1994), Hobson and
Rogers (1998). A different perspective to introduce level dependent volatility is to
build a model with heterogeneous agents (e.g. fundamentalist, rational, portfolio in-
surance traders) deriving the stochastic process for asset price in equilibrium, see
Frey and Stremme (1997), Platen and Schweizer (1998).

Consider an infinitesimal perturbationp(t)+ εζ (t) of the asset price. The path-
wise sensitivityζ (t) (i.e., variation process, see Kunita (1988)) is solution to the
linearized stochastic differential equation4

dζ (t) = ζ (t)(σ ′(t) dW (t)−σ ′(t)σ(t)dt ).

We associate toζ (t) therescaled variation defined as

z(t) :=
ζ (t)
σ(t)

.

By applying Itô formula, in Malliavin and Mancino (2002b), Barucci et al (2003) it
is proved that the rescaled variation is a differentiable function with respect tot and,
for anys < t, it can be expressed as

z(t) = exp(
∫ t

s
λ (τ ) dτ ) z(s), (6.13)

where

λ (t) :=−1
2
(σ(t)σ ′(t)+σ(t)σ ′′(t)). (6.14)

The functionλ (t) is called theprice-volatility feedback rate.

Remark 6.6. Note that in the Black-Scholes framework it holdsλ = 0.

The price-volatility feedback rate can be understood as the appreciation rate of the
rescaled variation. In this respect, large positive values ofλ indicate market insta-
bility, while negative values corresponds to stable market directions:

• a negativeλ would witness a period of stability, because5 z(t)→ 0 ast →+∞;
• a positiveλ would signal instability.

Furthermore, large positive values of the feedback rate usually anticipate a signif-
icant decrease in the price level and values ofλ around zero imply that the price
level is close to the equilibrium level (see also the empirical analysis in Inkaya and
Yolcu Ocur (2014)). Thus, it would be important to estimate the volatility feedback

4 Here the use of prime stands for the first derivative with respect to the levelp(t).
5 The proof is in Malliavin and Thalmaier (2006).
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rate without assuming the knowledge of an explicit expression of the volatility func-
tion.

It is possible to obtain a non-parametric estimation of the feedback rateλ (t)
from the observation of a single market evolution using the Fourier method.

Define the following processes:

A(t) :=
d〈p, p〉t

dt
, B(t) :=

d〈A, p〉t

dt
, C(t) :=

d〈B, p〉t

dt
,

where〈x,y〉 is the quadratic variation defined in (2.17). Using Itˆo formula and (6.14),
the feedback effect rate functionλ can be expressed as

λ (t) =
3
8

B2(t)
A3(t)

− 1
4

B(t)
A(t)

− 1
4

C(t)
A2(t)

. (6.15)

Remark 6.7. Note that the processA(t) is the spot volatility, the processB(t) is the
spot leverage, whileC(t) is the quadratic variation process between the leverage
and the asset price. Therefore, all the processesA(t),B(t) andC(t) can be obtained
from the asset prices data through three subsequent iterations of the Fourier cross-
volatility estimation procedure. More precisely, the estimator ofA(t) is given by
(4.1),B(t) by (6.8) and forC(t) the estimator is obtained with the same procedure
as forB(t), by using the Fourier coefficients ofB(t) computed in the second step. It
follows that the feedback rate can be empirically estimated from a single path of the
asset price.

6.4.1 Empirical Analysis

In this section we investigate whether the estimate of the feedback effect rate,λ ,
using high-frequency data observed in just one trading day allows us to asses the
market stability. Precise estimation of quadratic and higher order variation requires
huge quantities of data. This is the reason why high-frequency data and the Fourier
methodology are natural candidates to cope with this difficulty.

We use the 5-second observations of the EUR/GBP exchange rate in three differ-
ent dates (September 30th, 2008, May 21st and August 17th, 2015) which represent
different macroeconomic conditions in the financial scenario. The first date is close
to the Lehman Brothers bankruptcy on September 15th, 2008. May 21st, 2015 fol-
lows the instability raised by the United Kingdom election on the 7th, May. Finally,
August 17th, 2015, is chosen due to the calm climate in the financial market. One
trading day consists of 24 hours with a total of 17280 observations (i.e. one obser-
vation every 5-seconds).
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A preliminary analysis through the autocorrelation function plot of the 5-second
returns is conducted in Fig. 6.10 to detect the presence of market microstructure
noise. In fact, a significant first-order autocorrelation in the high-frequency returns
reveals the presence of noise. Fig. 6.10 shows the 5-second returns on September
30, 2008 (left panel), on May 21, 2015 (middle panel) and on August 17, 2015 (right
panel). The most noisy returns are those observed on September 30th, 2008, while
the microstructure present in the returns on the other two days behaves similarly.
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Fig. 6.10 Autocorrelation function plots of log-returns

We iterate the Fourier method three times in order to compute the feedback ef-
fect rateλ according to (6.15). Following the analysis in Chapter 5 we select the
frequenciesN andM in the Fourier expansion of the volatility in order to avoid the
bias generated by the microstructure noise effect, i.e., we setN = n 2/3 andM = n1/2,
wheren = 17280. This choice yieldsN = 667 andM = 131 for the estimation of
A(t). In the subsequent iterations, the two cutting frequencies are chosen dividing
by two the values obtained in the previous step, e.g., forB(t) the bandwidths are 333
and 65. This provides a reasonable approximation of the pathC(t) at a time scale of
10 minutes.

Fig. 6.11 compares the EUR/GBP exchange rate and the functionsA, B, C and
λ obtained on September 30, 2008 (left panels), May 21, 2015 (middle panels)
and August 17, 2015 (right panels). We observe that the values ofλ on September
30, 2008 are often large and positive revealing an unstable market despite the fact
that the observed values of the volatilityA (left panel second row) on the same
date are smaller than those observed on May 21, 2015 (middle panel second row).
Comparing the upper and lower left panels we can see that the highest positive
values of the feedback rate observed on September 30, 2008 anticipate the fall in
the exchange rate. This finding coheres with the interpretation of the sign of the
feedback rate given by the theory.

An accurate look at the left panel in the second row of Fig. 6.11 reveals that the
volatility A displays a three-peaks structure with peaks corresponding to the opening
of the major markets (Asia, Europe, North America). The most interesting finding
is that, although we expect a higher market instability on September 30, 2008 than
on May 21, 2015 or August 17, 2015, there is no evidence of this instability when
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Fig. 6.11 EUR/GBP exchange rate and estimates ofA, B,C, λ on September 30, 2008 (left panels),
May 21, 2015 (middle panels) and August 17, 2015 (right panels). On thex-axis the time window
[0,2π] corresponds to one trading day (24 hours). The samey-scale is used in the left, middle and
right panels, with the only exception for the panels showing the EUR/GBP exchange rate where a
differenty-scale is used in order to make the changes of EUR/GBP exchange rate dynamics more
visible.

looking at the values of EUR/GBP exchange rate or at the values of the volatility.
Only by looking at the values of the feedback effect rate is it possible to detect the
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market instability. Roughly speaking, the feedback effect rate measures the senti-
ment of the market on the future behavior of the observed price dynamics.
Let us further analyze the EUR/GBP exchange rate by comparing the values ofA, B,
C andλ on May, 21, 2015 and August 17, 2015. The lower right panel of Fig. 6.11
shows that the values of the feedback rateλ on August 17, 2015 oscillate around
zero (often being negative) for almost all the day. This stabilization ofλ around
zero combined with very low values of the volatilityA indicates that the price level
is close to the equilibrium level. On May 21, 2015 the feedback rate shows strong
fluctuations in the morning with a large positive peak which is followed by a fall
in the exchange rate. Later,λ oscillates around the origin assuming also negative
values which suggests that the market is coming back to a calm climate. During the
first two hours of tradingA has about the same shape every day, whileλ develops
dramatically different shapes; computingλ in real time could give a useful indicator
to predict market instability.

6.5 Volatility Forecasting Performance

Risk and asset management practices as well as derivative pricing rely upon a pre-
cise measure/forecast of volatility and covariances. Availability of high-frequency
data has improved the capability of computing volatility in an efficient way. By
treating volatility as observed rather than latent, non parametric estimation methods
improve forecasting performance using simple methods directly based on observ-
able variables. Empirical analysis have shown that the forecasting performance of
the Realized Volatility is superior to that of classical ARCH models (see, e.g., An-
dersen et al (2003)). However, for high-frequency observations and when the noise
component is relevant, the Realized Volatility is no longer a reliable measure, hence
the need of exploring the forecasting performance of methods designed to handle
market microstructure contaminations, such as the Fourier estimator.

Given a measure of the integrated volatility in the period[t − 1, t] obtained
through the Realized Volatility or the Fourier methodology, we intend to evaluate its
capability of forecasting the integrated volatility on day[t, t +1]: to this end the lin-
ear regression of one day ahead integrated volatility over today estimated volatility
is considered. In this setting the forecasting performance can be evaluated through
theR2 of the linear regression.

Suppose that the logarithm of the observed asset pricep̃(t) follows model (5.1),
where the efficient log-price satisfies the SDE (3.1). Integrability conditions stated
in (3.2) hold.

Denote byIV (t) the integrated volatility over one period, say[t −1, t]. Givenn
equally spaced observations in[t −1, t], we denote bŷIV (t) (resp.ĨV (t)) the inte-
grated volatility over the interval[t −1, t] estimated by either the Realized Volatility
or the Fourier estimator in the absence of microstructure noise effects (resp. in the
presence of microstructure noise). Assuming that the spot volatility model belongs
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to theEigenfunction Stochastic Volatility (ESV) models6, Andersen et al (2011a)
and Barucci et al (2012) proved that under the no leverage hypothesis it holds

Cov(IV (t +1), ĨV(t)) =Cov(IV (t +1), ÎV(t)) =Cov(IV (t +1), IV(t)),

therefore,

R2
ĨV

:=
Cov(IV (t +1), ĨV(t))2

Var[IV (t)]Var[ĨV(t)]
=

Cov(IV (t +1), IV(t))2

Var[IV(t)]Var[ĨV (t)]
. (6.16)

Formula (6.16) shows that maximizing theR2 of the linear regression is equiva-
lent to minimizing the variance of the considered estimator. Hence, minimum vari-
ance estimators should have better forecasting performances.

6.5.1 Monte Carlo Analysis

In this section the capability of the Fourier estimator to forecast the integrated
volatility one step (day) ahead is evaluated, taking as benchmark the performance
of the Realized Volatility7. Given the volatility process of the theoretical asset price,
we calculate the exact integrated volatility. The comparison between the Realized
Volatility and the Fourier estimation methods is accomplished through theR 2 as-
sociated with the Mincer-Zarnowitz style regression of the integrated volatility in
[t, t + 1] (IV(t + 1)) onto a constant and the estimated integrated volatility of the
previous day, see formula (6.16).

We consider a GARCH model similar to the model (3.15):

dp(t) = σ(t)dW1(t)
dσ2(t) = θ(ω−σ2(t))dt +σσ2(t)dW2(t),

(6.17)

with θ = 0.035,ω = 0.636,σ = 0.1439, whereE[IV (t)] = ω = 0.636.
We generate high-frequency evenly sampled theoretical pricesp(t) and observed

returns by simulating second-by-second return and variance paths over 252 trading
days (one trading year) using a Euler Monte Carlo discretization procedure with
a trading day made ofT = 6 hours for a total of 21600 observations. Then, we
sample the observations by varying the uniform sampling intervalρ(n) = T/n and
obtaining data sets with different frequencies. The initial point of the simulation of
the volatility process is set atω. For each observationt j, the observed asset price is
obtained by adding i.i.d random variablesη (t j) ( j = 0,1, . . . ,n) with zero mean and

6 The ESV models introduced by Meddahi (2001) include most continuous-time stochastic volatil-
ity models commonly used to describe asset prices. Roughly speaking, under these models the
volatility process depends only on a single (latent) state variable and can be expressed as a linear
combination of the eigenfunctions of the infinitesimal generator associated with this latent variable.
7 A comparison with methods specifically designed to handle market microstructure noise can be
found in Barucci et al (2012).
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constant variance to the theoretical price. Microstructure noise variance is set equal
to a given percentage of the integrated volatility. In particular, we consider a model
without microstructure noise and two different noise levels:

Var[η (t)] = ςE[IV (t)] with ς = 0%, 0.1%, 0.5%.

In our analysis we consider the following sampling intervals:

n 2160 1440 720 360 180 120 72
ρ(n) 10s 15s 30s 1min 2min 3min 5min

Table 6.3 provides the value of theR2 for the Realized Volatility (R2(RV (n)))
and for the Fourier estimator (R2(FN(n))). The cutting frequencyN is set equal to
the Nyquist frequency,N = n/2, in the absence of microstructure noise (i.e.ς = 0),
while it is chosen by using the feasible minimization of the estimated MSE (5.6),
whenς �= 0. The columnN lists the frequencies employed. Concerning the Realized

ς =0% ς = 0.1% ς=0.5%
n R2(RV(n)) R2(FN(n)) N R2(RV(n)) R2(FN(n)) N R2(RV(n)) R2(FN(n)) N
2160 0.9254 0.9254 10800.8020 0.8703 96 0.2014 0.8552 59
1440 0.9193 0.9131 720 0.8188 0.8708 83 0.2465 0.8372 50
720 0.9181 0.9181 360 0.8505 0.8544 64 0.4391 0.8078 39
360 0.9032 0.9030 180 0.8269 0.8411 52 0.5220 0.7477 31
180 0.8689 0.8685 90 0.8204 0.7807 37 0.6345 0.7237 27
120 0.8558 0.8565 60 0.8198 0.7615 28 0.6476 0.6768 25
72 0.8390 0.8355 36 0.7977 0.7033 18 0.6798 0.6480 17

Table 6.3 R2 for integrated variance forecasts: linear regression of the integrated volatility at time
t+1 onto a constant and the volatility at timet estimated by the Realized Volatility or by the Fourier
estimator for model (6.17).ς indicates the noise-to-signal ratio,n the number of observations and
N the Fourier cutting frequency obtained with the feasible minimization of (5.6).

Volatility estimator we observe that theR2 increases monotonically as the sampling
interval decreases only in the model without noise; if noise is added, then theR 2

reaches the highest value for a sampling interval between 1-5 minutes. This find-
ing is not observed for the Fourier estimator: theR2 increases with the sampling
frequency also in models with microstructure noise.

We can conclude that the forecasting performance of the two estimators is quite
similar in a model without noise. When noise is added the Fourier estimator out-
performs the Realized Volatility estimator in a significant extent for high-frequency
observations and when the noise component is relevant. Note that when the noise
increases, even maintaining the same size of the grid, the cutting frequency of the
Fourier estimator becomes smaller, as remarked in Chapter 5.

Remark 6.8. It is worth noting that the cutting frequency chosen in this experiment
is different from the one considered in Barucci et al (2012), whereN is selected in
order to maximize theR2. Moreover, the reason why the results shown in Table 6.3



6.5 Volatility Forecasting Performance 93

are slightly less performing than those in Barucci et al (2012) for low values ofn is
due to the use of the feasible minimization adopted here.

Out-of-sample Forecast

We complete our simulation study comparing the out-of-sample, one-day ahead
forecasts of the integrated volatility obtained by the Fourier estimator or by the Re-
alized Volatility with the true (simulated) values. Specifically, we consider a rolling
window of 230 consecutive days. This choice of the window size allows us to fore-
cast the last 22 days (i.e., a month). The steps of the procedure are the following:

Step (a) select 230 consecutive days (i.e. a time window) whose last date ist.
For each day compute an estimate of the integrated volatility by the Fourier or
the Realized Volatility estimator;
Step (b) using the 230 estimated integrated volatilities, regress one day ahead
integrated variance over today estimated variance

IV (t +1) = φ0+φ1ÎV (t)+ εt , (6.18)

wheret = 1,2, . . . ,m, εt is the error term and̂IV (t) stands for either Fourier
estimator or Realized Volatility;
Step (c) use the coefficients of the regression in Step (b) to forecast the integrated
volatility at t +1day, denoted byIV t+1|t :

IV t+1|t = φ0+φ1ÎV (t);

Step (d) move the rolling window along the series discarding the first estimate
and inserting the new oneIV (t + 1) available att + 1day, updatet and repeat
Steps (a)-(c).

Steps (a)-(d) provide a daily time series of one-day ahead forecastsIV t+1|t of the
integrated volatility. We compare these values with the true (simulated) values of the
integrated volatility. The two panels of Fig. 6.12 show the true integrated volatility
(dotted line) and the one-day ahead forecasts obtained using the Fourier (solid line)
and Realized Volatility (dashed line) estimators. The forecast values are relative
to the last month (i.e., the last twenty two days) of the trading year. In the left
panel the prices are not affected by noise and the forecasts of both methodologies
are obtained using 10 second returns. In the right panel the prices are affected by
noise (ς = 0.5) and the Fourier forecasts are still obtained using 10 second returns
while the Realized Volatility forecasts are obtained from 5 minute returns in order to
filter out microstructure effects. In the left panel (no noise) the mean squared errors
of the forecasts obtained by the Fourier and by the Realized Volatility estimators
are both equal to 0.002789, while in the right panel (presence of noise) the mean
squared error of the Fourier and Realized Volatility forecasts are 0.0049 and 0.0104
respectively, thus the Fourier method allows us to halve the error of the forecasts.
These results confirm that the Fourier methodology is strongly recommended in the
presence of noise.
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Fig. 6.12 Left Panel: true integrated daily volatility (black dotted line) and one-day ahead forecasts
obtained with the Fourier method (blue solid line) and Realized Volatility using 10 second returns
(no noise). Right Panel: true integrated daily volatility (black dotted line), one-day ahead forecasts
obtained with the Fourier method (blue solid line) using 10 second returns and Realized Volatility
(red dashed line) using 5 minute returns (with noiseς = 0.5%)

6.5.2 An Empirical Application

In this section we examine the forecasting power of the Fourier estimator using the
S&P 500 index futures recorded at the Chicago Mercantile Exchange (CME).The
sample covers the period from January 3, 2006 to December 31, 2007, a period of
500 trading days (1074825 tick-by-tick observations). Table 6.4 describes the main
features of our dataset.

Variable Mean Std. Dev. Min Max
S&P 500 index futures 1401.80 99.28 1.23e+3 1.59e+3
Number of trades per minute 5.6229 3.601 1 36

Table 6.4 Summary statistics for the sample of the traded CME S&P 500 index futures in the
period from 3 January 2006 to 31 December 2007 (1074825 trades). Std. Dev. denotes the sample
standard deviation of the variable.

High-frequency returns are contaminated by transaction costs, bid-ask bounce
effects, etc. leading to biases in the variance measures. Therefore, daily integrated
volatility has been computed by the Fourier estimator using tick-by-tick data and
the optimal cutting frequencyN obtained by feasible minimization of the MSE es-
timate (5.6). As a benchmark, we consider daily estimates obtained by the Realized
Volatility estimator from 5-minute returns.

We split our sample into two parts: the first one containing 50% of total estimates
is used as a “burn-in” period to fit a univariate AR(1) model8 for the estimated vari-
ance time series or equivalently to estimate the intercept and slope in the regression
(6.18) where the left hand side is replaced by the corresponding estimate and then

8 Even if a simple AR(1) model cannot perfectly capture the dynamic of the integrated volatility,
this model has been mainly chosen to make the empirical analysis comparable with the Monte
Carlo analysis.
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the fitted model is used to forecast integrated variance on the next day. The AR(1)
models are separately estimated for both time series of integrated volatilities given
by the Fourier and Realized Volatility estimators. The total number of out-of-sample
forecastsm is equal to 250. Each time a new forecast is performed, the correspond-
ing actual variance measure is moved from the forecast period to the first sample and
the AR(1) parameters are re-estimated in real time. Fig. 6.13 shows the estimated
daily volatility (red line) versus one-day ahead forecasts (blue line) obtained by the
Fourier methodology and by the Realized Volatility estimator over the forecast pe-
riod (December 3, 2007 - December 31, 2007). Although not very different from
a visual point of view, the mean squared error of the Fourier forecasts is 3.11e-9,
while for the Realized Volatility it is 3.69e-9, i.e., a relative difference of 18.65%.
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Fig. 6.13 Estimated daily volatility (red line) versus one-day ahead forecasts (blue line) obtained
by the Fourier methodology (tick-by-tick data) and by the Realized Volatility estimator (sparse
sampled data) over the forecast period (December 3, 2007 - December 31, 2007).

In order to better examine the informational content of forecasts and to assess the
advantage of using Fourier estimates from high-frequency data instead of Realized
Volatility estimates from sparse sampled data, for each estimated seriesÎV (t) of
integrated volatility, we project the estimated daily variance measure on day[t, t+1]
on a constant and the corresponding one-step-ahead forecastIV t+1|t obtained from
the series of Fourier estimates (IV Fourier

t+1|t ) and from the Realized Volatility estimates

(IV RV
t+1|t ), respectively. The Mincer-Zarnowitz forecast evaluation regression takes

the form
ÎV (t +1) = φ0+φ1IV t+1|t + εt+1, (6.19)

wheret = 0,1, . . . ,m−1. Conditioning upon the forecast, the prediction is unbiased
only if φ0 = 0 andφ1 = 1. TheR2 from these regressions provides a direct assess-
ment of the variability in the integrated variance that is explained by the particular
estimates in the regressions. TheR2 can therefore be interpreted as a simple gauge
of the degree of predictability in the volatility process and hence of the potential
economic significance of the volatility forecasts.

Table 6.5 shows the OLS estimates from regressions (6.19) where Fourier/Realized
Volatility estimates are regressed on the forecasts based on the AR(1) model fit-
ting the corresponding Fourier/RV estimates on the first year. We notice that the
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R2 is higher for the Fourier forecasts than for Realized Volatility. In particular, the
Fourier-based forecasts explain around 42% of the time series variability. All the es-
timated coefficient are significant at the 5% significance level, although the constant
termφ0 is very close to zero. Moreover, the coefficient estimate forφ1 is generally
close to unity and it is higher for the Fourier estimator than for Realized Volatility.
This seems to confirm a slightly higher forecasting power of the Fourier volatility
estimates in comparison to Realized Volatility.

Estimator φ0 φ1 R2

Fourier 0.000015 0.864428 0.420788
Std (0.000005) (0.064401)
T-statistics(2.931327) (13.422655)
RV 0.000018 0.843727 0.368194
Std (0.000006) (0.070183)
T-statistics(3.115034) (12.021872)

Table 6.5 OLS estimates from regressions (6.19) of Fourier/RV estimated integrated variance on
dayt +1 over a constant and each corresponding variance forecast over the forecast period.

In cases where there are more than one forecasting models, additional forecasts
are added to the right-hand side of (6.19) to check for incremental explanatory
power. Therefore, we also consider the regression

ÎV (t +1) = φ0+φ1IV Fourier
t+1|t +φ2IV RV

t+1|t + εt+1. (6.20)

Table 6.6 shows the results for the cases where the left-hand side of the regression
is given by the Fourier estimates and by Realized Volatility, respectively. In the first

Estimator φ0 φ1 φ2 R2

Fourier 0.000015 1.405607 -0.547214 0.423515
Std (0.000005) (0.504791) (0.506253)
T-statistics(2.843548) (2.784533) (-1.080912)
RV 0.000015 1.288085 -0.437539 0.382233
Std (0.000006) (0.543676) (0.545250)
T-statistics(2.698486) (2.369213) (-0.802455)

Table 6.6 OLS estimates from regressions (6.20) of Fourier/Realized Volatility estimated inte-
grated variance on dayt +1 over a constant and both forecasts over the forecast period.

case (upper panel), theR2 is almost unchanged compared to theR2 based solely
on Fourier. Moreover, the coefficient estimate forφ1 is close to unity and the null
hypothesis thatφ1 = 1 cannot be rejected at 5% level using the correspondingt
tests. On the contrary, the coefficientφ2 corresponding to the Realized Volatility
estimates is not significantly different from zero at the 5% level. This means that the
forecasts deriving from the Realized Volatility-based AR(1) model do not increment
the explanatory power of the regression. When we regress the Realized Volatility
series on both forecasts (lower panel), theR2 is slightly increased compared to theR2
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based solely on Realized Volatility. This means that the forecasts deriving from the
Fourier-based AR(1) model explain the sample variance of the Realized Volatility
series better thanIV RV

t+1|t itself. Moreover, unexpectedly, again the coefficientφ2

corresponding to the Realized Volatility estimates is not significantly different from
zero at the 5% level while the coefficient estimate forφ1 is close to unity and the
null hypothesis thatφ1 = 1 cannot be rejected. This means that the Fourier forecasts
have a larger explanatory power even when we regress the series of the Realized
Volatility estimates.

Finally, these results confirm the higher informational content of forecasts based
on Fourier estimates from high-frequency data versus Realized Volatility estimates
from sparse sampled data, mainly due to the higher accuracy and lower variabil-
ity of Fourier variance estimates which translate into superior forecasts of future
variances.

6.6 Further Readings

The academic literature proposes many other interesting applications of the Fourier
method which analyze the effects of the volatility estimates on other volatility-
related quantities. Far from being exhaustive, we list below some applications to
option pricing, principal component analysis, VaR estimation, term structure of in-
terest rates study, credit risk and medicine: Ren`o and Rizza (2003), Precup and
Iori (2004), Mancino and Ren`o (2005), Pasquale and Ren`o (2005), Malliavin et al
(2007), Mancino and Liu (2012), Papantonopoulos et al (2013), Barsotti and San-
felici (2014), Kenmoe and Sanfelici (2014), Han et al (2014), Sanfelici and Uboldi
(2014).





Appendix A
Mathematical Essentials

A.1 Stochastic Processes

We resume in this section few fundamental concepts frequently used across the
book. The reader can find a deeper and more rigorous treatment of the huge theory of
stochastic processes in beautiful books such as e.g., Revuz and Yor (1991), Øksendal
(1995).

A.1.1 Diffusion Processes

In simple words, we can say that a diffusion process is a process that can be locally
described by the following stochastic difference equation

p(t +∆ t)− p(t) = b(t)∆ t +σ(t)ε(t)
√

∆ t, (A.1)

whereε(t) are independent identically distributed random variables having standard
Gaussian distribution andµ andσ are deterministic functions. The first component,
b, is called thedrift, while the second one,σ , is named thediffusion.

More precisely, the diffusive component is described through a Brownian motion
W , defined as follows:

Definition A.1. A Brownian motion(W (t))t∈[0,T ] is a stochastic process such that
the following properties hold:
i) W (0) = 0,
ii) for any r < s ≤ t < v, the incrementsW (v)−W (t) andW (s)−W (r) are indepen-
dent random variables,
iii) for any s < t, the incrementW (t)−W (s) has Gaussian distribution with zero
mean and variancet − s.

In a natural way aninformation structureis associated with the Brownian motion,
which is called thenatural filtration. Loosely speaking, the filtrationF t denotes

99
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the information generated by the Brownian motionW on the interval[0, t]. More
precisely, we have the following

Definition A.2. A filtration (Ft )t≥0 on the probability space(Ω ,F ,P) is an in-
creasing family of sub-sigma algebras ofF .

Definition A.3. Given a filtration(Ft )t≥0 on the probability space(Ω ,F ,P) and a
stochastic processX = (Xt)t≥0 defined on the same space, the processX is adapted
to the filtrationF if Xt is measurable with respect toFt for anyt ≥ 0.

The Brownian motion has continuous paths, that ist → W (t) is a continuous
function. Therefore, the diffusion model rules out the presence of jumps. Now, let-
ting∆ t → 0 in (A.1), we can write formally the (univariate) Itˆo stochastic differential
equation

dp(t) = b(t)dt +σ(t)dW(t), p(0) = p0, (A.2)

where the processesb(t) andσ(t) satisfy appropriate measurability and integrability
conditions.

Consider nowl independent Brownian motionsW 1, . . . ,W l . Then, we can define
thed-variate stochastic differential system

dp j(t) = b j(t)dt +
l

∑
i=1

σ j
i (t)dW i(t), p j(0) = p j

0, j = 1, . . . ,d. (A.3)

In this case, the drift is ad-dimensional vector and the diffusion is ad× l matrix
σ1

1 · · · σ1
l

σ2
1 · · · σ2

l
...

. . .
...

σd
1 · · · σd

l


Definition A.4. Consider a sequence of real random variables(Xn)n≥0 and a random
variableX defined on the same probability space. We will say that the sequenceX n

converges in probability toX if for any ε > 0 it holds

lim
n→∞

P(|Xn −X |> ε) = 0.

Definition A.5. Consider a sequence of real random variables(Xn)n≥0 and a random
variableX defined on the same probability space. We will say that the sequenceX n

converges almost surely toX if it holds

P(limsup
n→∞

|Xn −X |> 0) = 0.
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A.1.2 Itô Energy Identity

The following result, also known asItô isometry, is a fundamental result in the
study of the quadratic variation/volatility. LetX be a stochastic process adapted to
the Brownian filtration and square integrable, then

E[(
∫ t

0
X(s)dW (s))2] = E[

∫ t

0
X2(s)ds], for anyt ∈ [0,T ]. (A.4)

A.1.3 Itô Formula

The fundamental goal which can be achieved through Itˆo formula is that, given the
dynamics of the underlying factor (both univariate than multivariate), we can obtain
the stochastic evolution of any (smooth) function of the underlying. An intuitive
idea is given by applying a Taylor expansion

d f =
∂ f
∂ t

dt +
∂ f
∂x

dp+
1
2

∂2 f
∂x2 (dp)2+

1
2

∂2 f
∂ t2 (dt)2+

∂2 f
∂ t∂x

dt ·dp (A.5)

(where the dependence on(t,x) is usually omitted for ease of notation) and then
using the following Itô table rules

(dW )2 = dt, dW ·dt = 0, (dt)2 = 0.

Theorem A.1. Let p(t) satisfy the dynamic (A.2) and f (t,x) be a function, differen-
tiable with respect to t and twice differentiable with respect to x, then

d f (t, p(t)) =

(
∂ f
∂ t

+ b
∂ f
∂x

+
1
2

σ2 ∂2 f
∂x2

)
dt +σ

∂ f
∂x

dW (t). (A.6)

With the same method, for the diffusion (A.3) the multidimensional Itˆo formula
holds

Theorem A.2. Let p(t) satisfy the dynamics (A.3) and f (t,x) be a function, differ-
entiable with respect to t and twice differentiable with respect to x, then

d f (t, p(t)) =

(
∂ f
∂ t

+
d

∑
j=1

b j ∂ f
∂x j

+
1
2

d

∑
i, j=1

Σ i, j ∂2 f
∂xix j

)
dt +

d

∑
j=1

σ j
∂ f
∂x j

dW (t), (A.7)

where σ j is the vector

σ j = (σ j
1, . . . ,σ

j
l )

and the entries of the matrix Σ are equal to
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Σ i, j(t) =
l

∑
k=1

σ i
k(t)σ

j
k (t), i, j = 1, . . . ,d.

The matrixΣ(t) is the variance-covariance matrix, also calledvolatility matrix.
The financial modeling also needs to consider the case of dependent Brownian

motions. Consider nowd Brownian motions such

dW i ·dW j = ρ i, jdt, i, j = 1, . . . ,d

whereρ i, j is the correlation between the two Brownian motionsW i,W j and the
system of stochastic differential equations

dp j(t) = b j(t)dt +σ j(t)dW j(t), p j(0) = p j
0, j = 1, . . . ,d. (A.8)

Then, the multidimensional Itˆo formula is the following:

d f (t, p(t)) =

(
∂ f
∂ t

+
d

∑
j=1

b j ∂ f
∂x j

+
1
2

d

∑
i, j=1

σ iσ jρ i, j ∂2 f
∂xix j

)
dt +

d

∑
j=1

σ j ∂ f
∂x j

dW j(t).

(A.9)

A.2 Fourier Analysis

TheFourier transform is a mathematical tool which has been widely used in many
applied fields, as engineering, physics and, more recently, finance. The term Fourier
transform refers to both the frequency domain representation and the mathematical
operation that associates the frequency domain representation to a function of time.
For many functions of practical interest the inverse Fourier transform can be defined.
Linear operations done in one domain (time or frequency) have corresponding op-
erations in the other domain, which are sometimes easier to perform. For instance,
the operation of differentiation in the time domain corresponds to multiplication
by the frequency; further, convolution in the time domain corresponds to ordinary
multiplication in the frequency domain. After performing the desired operations,
transformation of the result can be made back to the time domain. We recall here
few definitions which are needed for reading this book. More exhaustive study can
be found in many insightful books, e.g., Bloomfield (2000), Hannan (1970), Priest-
ley (1983).

Given a functionf defined and integrable on[0,2π], thek-th Fourier coefficient
is defined for any integerk as

F ( f )(k) :=
1

2π

∫ 2π

0
f (t)e−ikt dt (A.10)

being i=
√−1. By theFejer theorem, the trigonometric series
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∑
|k|≤N

(
1− |k|

N

)
F ( f )(k) eikt (A.11)

converges uniformly (and in mean square) tof (t) on [0,2π] if the function f is
continuous on[0,2π], see, e.g., Malliavin (1995). Moreover, we define

F (d f )(k) :=
1

2π

∫ 2π

0
e−ikt d f (t) , (A.12)

and, using integration by parts, we remark that

F ( f )(k) =
i
k
[

1
2π

( f (2π)− f (0))−F (d f )(k)].

Remark A.1. It is also possible to expand the functionf using only real number, as
a series of sine and cosine, in virtue of theEuler identity e it = cost + i sint; for any
integerk > 0, set

ak( f ) :=
1
π

∫ 2π

0
cos(kt) f (t)dt, bk( f ) :=

1
π

∫ 2π

0
sin(kt) f (t)dt,

and

a0( f ) :=
1

2π

∫ 2π

0
f (t)dt,

then it holds for any integerk > 0

F ( f )(k) = ak( f )− ibk( f ), F ( f )(−k) = ak( f )+ ibk( f ).

Remark A.2. If we liked to work on the interval[0,T ], the definition of thek-th
Fourier coefficient (A.10) would change into

F ( f )(k) :=
1
T

∫ T

0
f (t)e−i 2π

T ktdt,

and the trigonometric series (A.11) would become

∑
|k|≤N

(
1− |k|

N

)
F ( f )(k) ei 2π

T kt .





Appendix B
Codes for the Fourier Estimator

This appendix contains the Matlab� implementation of some Fourier estimators
illustrated in the previous chapters.

B.1 Estimator of the Integrated Volatility

The implementation of the Fourier estimator of integrated volatility can be easily
obtained from formulas (3.3)-(3.5). It should be remarked that this form of the es-
timator is computationally more efficient than the equivalent (3.6). The algorithm
is structured as a Matlab� function that returns the daily value of the integrated
variance, recorded in the variableivol. The input parameters are: the observed
log-pricesp(ti), i = 0,1, . . . ,n collected in a vectorP; the observation time vectort
= (t0, t1, . . . , tn); the cutting frequencyN. Observation times need not to be equally
spaced.

In the Matlab� algorithm 1,c_0 contains the zero-th Fourier coefficient of the
log-returns and thek− th entry of vectorc_p contains thek− th Fourier coefficient,
k = 1,2, . . . ,N. Algorithm 1 exploits the fact thatc−s(dpn) = cs(dpn).

Matlab� algorithm 1
function ivol = FE(P,t,N)

% Computes the integrated volatility by the Fourier
% estimator with Dirichlet kernel

% Input variables:
% P vector of the observed log-prices
% t vector of the observation times
% N cutting frequency
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% Output variables:
% ivol integrated variance

r=diff(P); % log-returns

c_p=zeros(N,1);
c_0=sum(r);

for k=1:N
c_p(k)=sum(exp(1i*k*t(1:end-1)).*r);

end
ivol=(c_0.*conj(c_0)+2*sum(c_p.*conj(c_p)))/(2*N+1);

We can slightly modify the algorithm 1 by introducing the Fejer kernel in the
convolution product as in (3.9)

Matlab� algorithm 2
function ivol = FEker(P,t,N)

% Computes the integrated volatility by the Fourier
% estimator with Fejer kernel

% Input variables:
% P column vector of the observed log-prices
% t column vector of the observation times
% N cutting frequency

% Output variables:
% ivol integrated variance

r=diff(P); % log-returns

c_p=zeros(1,2*N+1); c_pp=zeros(1,2*N+1);

for k=1:(2*N+1)
s=k-N-1;
c_p(k)=sum(exp(-1i*s*t(1:end-1)).*r);
c_pp(k)=sum(exp(1i*s*t(1:end-1)).*r);
term(k)=(1-abs(s)/N)*c_p(k)*c_pp(k);

end
ivol=sum(term)/(N+1);
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B.2 The Estimated Bias and MSE

The practical calculation of (5.3) and (5.6) hinges on the estimation of the relevant
noise moments as well as on the preliminary identification of the integrated volatility
V and integrated quarticityQ. The functionmoments.m allows one to compute
daily values for the sample moments, whileV andQ are taken as input variables.
Since the noise moments do not vary across frequencies under the MA(1) model, in
computing the MSE estimates we use sample moments constructed using quote-to-
quote return data in order to estimate the relevant population moments of the noise
components according to Bandi and Russell (2008), so that forn sufficiently large
we have

E[ε2]≈ 1
n

n

∑
j=1

(δj(p̃))2− V
n
, E[ε4]≈ 1

n

n

∑
j=1

(δj(p̃))4− 6E[ε2]V
n

,

E[η 2] =
E[ε2]

2
, E[η 4] =

E[ε4]

2
−3

E[ε2]2

4
,

whereε is the noise return process.The outputs of the function are daily estimates
for these moments, stored in the variablesE2, E4, Eeta2, Eeta4 respectively and
daily values ofα , β andγ defined by (5.5).

Matlab� algorithm 3
function [alpha,beta,gamma,E2,E4,Eeta2,Eeta4]
= moments(P,n,V)

% Computes sample moments of the noise

% Input variables:
% P column vector of the observed log-prices
% n total number of intra-day returns
% V integrated variance

r=diff(P); % log-returns

E2=sum(r.ˆ2)/n-V/n;
E4=sum(r.ˆ4)/n-(6*E2*V)/n;
Eeta2=E2/2;
Eeta4=E4/2-3*E2ˆ2/4;

alpha=E2ˆ2;
beta=4*Eeta4;
gamma=8*Eeta2*V+alpha/2-2*Eeta4;
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The following algorithm 4 implements the computation of estimates (5.3) and
(5.6) starting from daily measurements of the sample moments of the noise. The
function provides two row vectors (BIAS, MSE) containing the estimated values
of the bias and MSE for the Fourier estimator of integrated volatility as a function
of the maximum frequencytrunc at which we decide to truncate the Fourier ex-
pansion. Estimates (5.3) and (5.6) allow us to measure the bias and MSE of the
volatility estimators from observed prices also in the case of empirical market quote
data, where the efficient price and volatility and the noise contaminations are not
available. By direct comparison of the valuesMSE(trunc), for trunc spanning
from 1 toN, one can select the optimal cutting frequency minimizing the MSE of
the Fourier estimator. The optimal cutting frequency,Nopt is equal the index of the
minimum value component of the vectorMSE.

Matlab� algorithm 4
function [BIAS,MSE]
= estimates(n,N,ND,Q,alpha,beta,gamma,E2,Eeta4,T)

% Input variables:
% n total number of intra-day returns
% N maximum Fourier frequency
% ND number of days in the sample
% Q daily integrated quarticity vector
% P column vector of the observed log-prices
% alpha daily estimations of alpha in (3.9)
% beta daily estimations of beta in (3.9)
% gamma daily estimations of gamma in (3.10)
% E2 daily estimations of E2
% Eeta4 daily estimations of Eeta4
% T trading period

% Output variables:
% BIAS row vector of bias estimates (3.7)
% MSE row vector of MSE estimates (3.11)

h=2*pi/n;
MSE1=zeros(ND,N); BIAS1=zeros(ND,N);
alphaFE=zeros(ND,N); betaFE=zeros(ND,N);
gammaFE=zeros(ND,N);

for k=1:N
trunc=min(n/2,k);
for i=1:ND % i-th day

BIAS1(i,k)=n*E2(i)*(1-D(trunc,h));
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alphaFE(i,k)=alpha(i)*(1+(D(trunc,h))ˆ2
-2*D(trunc,h));

betaFE(i,k)=beta(i)*(1+(D(trunc,h))ˆ2
-2*D(trunc,h));

gammaFE(i,k)=gamma(i)+4*(Eeta4(i)+E2(i)ˆ2)

*(2*D(trunc,h)-(D(trunc,h))ˆ2)+4*pi*Q(i)
/(2*trunc+1);

MSE1(i,k) = 2*Q(i)*h+betaFE(i,k)*n
+alphaFE(i,k)*nˆ2+gammaFE(i,k);

end
end
MSE=mean(F1);
BIAS=mean(BIAS1);

Algorithm 4 calls the functionD.m that provides the computation of the rescaled
Dirichlet kernel.

Matlab� algorithm 5
function d = D(N,t)

% Rescaled Dirichlet kernel:

d=1;

for s=1:N
d=d+2*cos(s*t);

end

d=d/(2*N+1);

Analogous estimation of the bias and MSE for the Fourier-Fejer estimator (3.9)
of integrated volatility can be obtained from algorithm 4 by substituting the function
D.m with the functionV.m of algorithm 6.

Matlab� algorithm 6
function f = V(N,t)
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% Rescaled Fejer kernel:

f=sin(N*t).ˆ2./((N*t).ˆ2);

In algorithm 6 we have implemented a modified version of the Fejer kernel which
is asymptotically equivalent to (3.10) but improves the performance of the estima-
tors.

Writing in the Matlab� command windows the following lines:

x=[-pi:0.01:pi];
f=zeros(5,629); g=zeros(5,629);

for N=1:5
f(N,:)=D(N,x); g(N,:)=V(N,x);

end

figure, plot(x,f)
xlabel(’x’)
ylabel(’D_N(x)’)
title(’Rescaled Dirichlet kernel’)
axis([-pi,pi,-0.4,1])

figure, plot(x,g)
xlabel(’x’)
ylabel(’F_N(x)’)
title(’Fejer kernel’)
axis([-pi,pi,0,1])

we obtain Figure B.1, showing the graphs of the rescaled Dirichlet kernelD N(x) and
of the rescaled Fejer kernelFN(x), for N = 1,2,3,4,5.

B.3 Estimator of the Integrated Cross-Volatilities

The implementation of the Fourier estimator of integrated co-volatility can be eas-
ily obtained from formula (3.22). We consider the case of two assets. The in-
put parameters are: the observed log-pricesp1(t1

i ), i = 0,1, . . . ,n1 and p2(t2
j ),

j = 1,2, . . . ,n2, collected in two vectorsP1 andP2; the observation time vectors
t1 = (t1

0, t
1
1, . . . , t

1
n1
) andt2 = (t2

0, t
2
1, . . . , t

2
n2
); the cutting frequencyN. Observa-

tion times need not be either equally spaced or synchronous. Daily values of the
integrated variances and covariance are recorded in the variablesiv11, iv22 and
iv12 and are the output of algorithm 7.
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Fig. B.1 Rescaled Dirichlet kernel and rescaled Fejer kernel.

The implementation of the Matlab� algorithm 7 is slightly different from al-
gorithm 1. The vectorsc_p1 andc_p2 contain thes− th Fourier coefficient of
the log-returns on the two assets, fors = −N,−N +1, . . . ,N −1,N and the vectors
c_pp1 andc_pp2 contain their conjugates.

Matlab� algorithm 7
function [iv11,iv12,iv22]=FE2(P1,P2,t1,t2,N)

% Computes the integrated variances and covariances on
% two assets by the Fourier estimator with Dirichlet
% kernel

% Input variables:
% P1, P2 vectors of the observed log-prices
% t1, t2 vectors of the observation times
% N cutting frequency

% Output variables:
% iv11, iv22 integrated variances on asset 1 and 2
% iv12 integrated covariance

r1=diff(P1); r2=diff(P2); % log-returns

c_p1=zeros(2*N+1,1); c_pp1=zeros(2*N+1,1);
c_p2=zeros(2*N+1,1); c_pp2=zeros(2*N+1,1);

for k=1:(2*N+1)
s=k-N-1;
c_p1(k)=sum(exp(-1i*s*t1(1:end-1)).*r1);
c_pp1(k)=sum(exp(1i*s*t1(1:end-1)).*r1);
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c_p2(k)=sum(exp(-1i*s*t2(1:end-1)).*r2);
c_pp2(k)=sum(exp(1i*s*t2(1:end-1)).*r2);

end
iv11=sum(c_p1.*c_pp1)/(2*N+1);
iv12=sum(c_p1.*c_pp2)/(2*N+1);
iv22=sum(c_p2.*c_pp2)/(2*N+1);

B.4 Estimator of the Spot Volatility

The implementation of the Fourier estimator of spot volatility can be easily obtained
from formula (4.1) in Chapter 4. The Matlab� algorithm 8 implements the spot
volatility estimator in the interval[0,T ]. This is done suitably rescaling the time
interval (see Appendix A.2).

The input parameters are: the observed log-pricesp(t i), i = 0,1, . . . ,n collected
in a vectorP; the observation time vectort = (t0, t1, . . . , tn); the cutting frequency
N; the time vectortau = (τ0,τ1, . . . ,τm) at which the spot volatility is evaluated;
the time horizonT and the cutting frequencyM. The values of the estimated spot
volatility σ̂2

n,N,M(τi), i = 0,1, . . . ,m are recorded in the vectorspot and the Fourier
coefficients of the spot volatility are recorded in the vectorc_s.

Observation times are not required to be equally spaced.

Matlab� algorithm 8
function [spot,c_s] = FE_spot_vol(P,t,tau,T,N,M)

% Computes the spot variance by the Fourier estimator
% with Dirichlet kernel

% Input variables:
% P vector of the observed log-prices
% t vector of the observation times
% tau vector of the times where the
% volatility is estimated
% N maximum Fourier frequency for price returns
% M maximum Fourier frequency for spot variance

% Output variables:
% spot vector of spot variance at the time grid tv
% c_s Fourier coefficients of the spot variance
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n=max(size(P)); nv=max(size(tau)); const=2*pi/T;
c_pp=zeros(N+M,1); c_p=zeros(2*N+2*M+1,1);
r=diff(P);
c_0=sum(r);

for k=1:N+M
c_pp(k)=sum(exp(-i*const*k*t(1:end-1)).*r);

end
for j=1:N+M

c_p(j)=conj(c_pp(N+M+1-j))/T;
end
c_p(N+M+1)=c_0/T;
for j=1:N+M

c_p(N+M+1+j)=c_pp(j)/T;
end

% Fourier coefficients of the spot variance in [0,T]
fact=T/(2*N+1);
nshift=N+M+1;
for k=-M:M

c_s(k+M+1)=0.0;
for l=-N:N

c_s(k+M+1)=c_s(k+M+1)+fact*(c_p(l+nshift)*
c_p(k-l+nshift));

end
end
for it=1:nv

spot(it)=0.0;
for k=-M:M

spot(it)=spot(it)+(1-abs(k)/M)*c_s(k+M+1)*
exp(i*tau(it)*const*k);

end
end
spot=real(spot);

B.5 Using Fast Fourier Transform Algorithm

The Fourier spot volatility estimator can also be implemented using theFast Fourier
Transform algorithm (FFT). The advantage of using FFT is mainly computational.
In fact, the FFT reduces the complexity of computing the discrete Fourier transform
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from O(n2), which arises if one simply applies the basic algorithm, toO(n logn),
wheren is the data size.

Matlab� includes built-in routinesfft(x) andifft(x) which implement
discrete Fourier and inverse transforms, Cooley and Tukey (1965).

The reference interval is again[0,T ] as for algorithm 8. However, due to the
specific structure of the FFT algorithm, the time grid at which the price is sampled
is ti = i(T/n), i = 0,1, . . . ,n, while the time grid at which the spot volatility is re-
constructed is given byτ j = ( j−1)T/(2M+1), j = 1,2, . . . ,2M+1, where, as in
Section B.4,M is the cutting frequency in the spot volatility reconstruction.

The input parameters are: the observed log-pricesp(t i), i = 0,1, . . . ,n collected
in a vectorP; the cutting frequenciesN andM; the time horizonT. The values of the
estimated spot volatilitŷσ2

n,N,M(τ j) are recorded in the vectorspot and the Fourier
coefficients of the spot volatility are recorded in the vectorC.

Thek-th discrete Fourier transform of the log-return vectorr is obtained by the
Matlab� routinefft and recorded in the variables

fft_v(k)=
n

∑
j=1

r( j)ω( j−1)(k−1)
n , whereωn = e−2πi/n.

Then, the useful Fourier coefficients of the log-returns are collected in the vector
fft_def.

The spot volatility estimate at timeτ j, j = 1, . . . ,2M+1, can be obtained by the

Matlab� inverse Fourier transform functionifft(f) through the following steps

Fsum(j)=
M

∑
k=−M

(1− |k|
M

)ck(σ2
n,N)e

i 2π
T k τ j

= (2M+1)

[
1

2M+1

2M+1

∑
h=1

(1− |h−M−1|
M

)ch−M−1(σ2
n,N)ω

−( j−1)(h−1)
2M+1

]
ω( j−1)M

2M+1

= (2M+1) ifft(f)(j) ω( j−1)M
2M+1

Matlab� algorithm 9
function [spot] = FE_spot_vol_FFT(P,T,N,M)

% Computes the spot variance by the Fourier estimator
% with Dirichlet kernel and FFT

% Input variables:
% P vector of the observed log-prices
% N maximum Fourier frequency for price returns
% M maximum Fourier frequency for spot variance

% Output variables:
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% spot vector of spot variance at the time grid tau

r=diff(P); fft_v=fft(r);
idx=M+N+1:-1:2; ff=fft_v(idx);
fft_def=[conj(ff) fft_v(1:M+N+1)];
fft_def=fft_def./T; % Fourier coeff. of log-returns

idxk=-N:1:N; nshift=M+N+1;
for kk=-M:M

idxx=idxk+nshift+kk;
Capp=fft_def(idxx);
coeff(M+kk+1)=Capp*fft_def(nshift-N:nshift+N)’;

end
C=coeff.*(T/(2*N+1)); % Fourier coeff. of variance

k=(-M:1:M);
f=C.*(1-abs(k)/M);
Fsum=(2*M+1)*ifft(f);
Fsum=exp(-1i*2*pi*M*(k+M)/(2*M+1)).*Fsum;
spot=real(Fsum);

It is worth noting that the best performance of the fast Fourier algorithm 9 is
obtained choosingn, N andM to be a power of two. However, the function works
even for values ofn, N andM different from a power of two.
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