We remind that the solution of the scattering problem considered is given by the following series expansion in spherical harmonics:

us( x) = -4p +¥
å
l = 0 
il jl(w*)hl(1)(w*|| x||)
hl(1)(w*)
l
å
m = -l 
Ylm( ^
x
 
)Ylm( a*),
     x = || x|| ^
x
 
|| x || > 1,   ^
x
 
Î B,
(1)

where a*=(0,0,-1)T, w*=1, hl(1)(z), jl(z), z Î C, l = 0,1,¼ are the spherical Hankel and Bessel functions of index l respectively, Ylm, l = 0,1,¼, m = 0,±1,¼,±l, are the spherical harmonics and B={x ÎR3 |  || x ||=1   }.

We have computed the relative error committed when we replace the numerical solution usw*,S,m*,t obtained with the numerical method proposed in the paper associated to this website with the (approximate) solution usLmax obtained truncating the expansion (1) at l = Lmax and choosing Lmax = 10 on the following points on the boundary of a sphere having radius 1.5 and center the origin:

xi,j* = (1.5sin( p
20
i)cos( p
10
j),1.5sin( p
20
i)sin( p
10
j),1.5cos( p
20
i))T,
         i = 1,2,¼,19, j = 0,¼,20  and  i = 0,j = 1   and   i = 20,  j = 1,
(2)

We define the relative error as follows:

relative error  =
          (3)
é
ê
ê
ê
ê
ê
ë

å
i = 0,20 
|usw*,S,m*,t( xi,1*)-usLmax( xi,1*)|2+ 19
å
i = 1 
20
å
j = 0 
|usw*,S,m*,t( xi,j*)-usLmax( xi,j*)|2


å
i = 0,20 
| usLmax( xi,1*)|2+ 19
å
i = 1 
20
å
j = 0 
|usLmax( x20,1*)|2
ù
ú
ú
ú
ú
ú
û
1/2






 
.

The approximate solution usLmax when Lmax = 10 on the sphere of center the origin and radius r = 1.5 is 4-6 digits accurate.

The results obtained are shown in the following table:

 

Table 1: Comparison between the solution computed with the method proposed and the spherical harmonics expansion


Number of (complex) unknowns used to approximate
the solution of the integral equations

relative error

256

7.40e-02
1024 1.67e-02
4096 5.77e-03
16384 3.85e-04
65536 3.83e-04
262144 3.79e-04